Document Type : Original Article
Author
Department of Mechanical Engineering, Ferdowsi University of Mashhad
Abstract
In this paper simulation of cavitating flow over a disk cavitator is reported using computational fluid dynamics (CFD) technique. To apply the cavitation model, the flow has been considered as a single fluid, two-phase mixture. A transport equation model for the local volume fraction of vapor is solved and a finite rate mass transfer model is used for the vaporization and condensation processes based on the Kunz model. The volume of fluid (VOF) method is applied to track the interface of liquid and vapor phases. Our simulation is performed using a two phase solver available in the framework of the OpenFOAM package, namely “interPhaseChangeFoam”. The solver is based on finite volume method. Two different turbulence model, i.e., k-w SST and large eddy simulation (LES) are employed. Simulation is performed for the supercavitation regime. The results of our simulation are compared with the experimental data and analytical expressions and suitable accuracy has been investigated.
Keywords
Article Title [Persian]
Numerical Simulation of 3-D Cavitation behind a Disk Cavitator Using OpenFOAM
Author [Persian]
- Ehsan Roohi
Department of Mechanical Engineering, Ferdowsi University of Mashhad
Abstract [Persian]
In this paper simulation of cavitating flow over a disk cavitator is reported using computational fluid dynamics (CFD) technique. To apply the cavitation model, the flow has been considered as a single fluid, two-phase mixture. A transport equation model for the local volume fraction of vapor is solved and a finite rate mass transfer model is used for the vaporization and condensation processes based on the Kunz model. The volume of fluid (VOF) method is applied to track the interface of liquid and vapor phases. Our simulation is performed using a two phase solver available in the framework of the OpenFOAM package, namely “interPhaseChangeFoam”. The solver is based on finite volume method. Two different turbulence model, i.e., k-w SST and large eddy simulation (LES) are employed. Simulation is performed for the supercavitation regime. The results of our simulation are compared with the experimental data and analytical expressions and suitable accuracy has been investigated.
Keywords [Persian]
- Disk cavitator
- LES turbulence model
- mass transfer model
- VOF