Document Type : Original Article
Authors
Department of Aerospace Engineering MalekAshtar University
Abstract
Nowadays, operational usage of the unmanned aerial vehicles (UAVs) in various missions is on the increase considering their capabilities. Provided that there is coordination between the UAV, navigation and control system, operational capability of the UAVs increases. Since there is no pilot in UAVs, the task of guidance and control of the UAV for carrying out the mission depends on the ability of the autopilot and guidance system. This paper regards the control and the guidance as two separate entities in way point tracking problem. To do so, backstepping controller design for inner loop to track the commands is generated by the outer loop. The outer loop is designed based upon fuzzy logic. The proposed system uses standard Mamdani fuzzy controllers that provide speed, heading, and flight path angle references for the autopilots. Nonlinear six-degree-of-freedom equations of motion are used to model the vehicle dynamics. Simulations were carried out to verify the performance of the system. The results indicate the ability of way point tracking system to track the desired set of waypoints.
Keywords
Main Subjects
Article Title [Persian]
Way Point Tracking of Fixed-Wing Unmanned Aerial Vehicles Using Backstepping Controller and Fuzzy Logic
Authors [Persian]
- Seyedeh sepideh Madani
- mohammad ali shahi ashtiyani
Department of Aerospace Engineering MalekAshtar University
Abstract [Persian]
Nowadays, operational usage of the unmanned aerial vehicles (UAVs) in various missions is on the increase considering their capabilities. Provided that there is coordination between the UAV, navigation and control system, operational capability of the UAVs increases. Since there is no pilot in UAVs, the task of guidance and control of the UAV for carrying out the mission depends on the ability of the autopilot and guidance system. This paper regards the control and the guidance as two separate entities in way point tracking problem. To do so, backstepping controller design for inner loop to track the commands is generated by the outer loop. The outer loop is designed based upon fuzzy logic. The proposed system uses standard Mamdani fuzzy controllers that provide speed, heading, and flight path angle references for the autopilots. Nonlinear six-degree-of-freedom equations of motion are used to model the vehicle dynamics. Simulations were carried out to verify the performance of the system. The results indicate the ability of way point tracking system to track the desired set of waypoints.
Keywords [Persian]
- Backstepping controller
- Fuzzy guidance
- Trajectory tracking
- Unmmand aerial vehicles