Document Type : Original Article

Author

10.22034/jast.2022.246477.1036

Abstract

Flight simulation is a powerful and usefull instrument in design, testing, evaluation and validation of aircrafts; The results of aerolastic simulation along with rigid simulation can be used in the many areas of designs, such as modification or optimization, stability analysis and evaluating field test data; It can be said that the use of simulation in the fields of design and optimization, especially during the initial and detailed design, should be considered more than other fields; In this research, by use of simulation, the effect of some design parameters such as slenderless ratio, maneuvering acceleration, propulsion curve, natural frequency of the structure, aerodynamic load distribution , etc. On issues such as flight and tracking behavior, stability and collision accuracy, has been examined; In cases such as: evaluating the initial error or veviation of the thurst vector or its curve, rolling speed, tracking of control commands, etc. aerolastic simulation gives a more realistic output compared to rigid simulation; Further more in cases such as investigating the effect of aerodynamic load distribution or stiffness ans and mass distribution, only aerolastic simulation is able to respond. Accordingly, the main orientation of this research is to develop an approach with acceptable accuracy and speed in order to simulate elastic projectiles in order to achieve some of the mentioned goals; However, due to the wide range of effective parameters and their interaction, in this study, only the role of thrust and body rigidity has been examined.

Keywords

Main Subjects

Article Title [فارسی]

Development of real-time aeroelastic flight simulation tool for primary design and stability analysis

Author [فارسی]

  • Hossein Favaedi

Abstract [فارسی]

Flight simulation is a powerful and usefull instrument in design, testing, evaluation and validation of aircrafts; The results of aerolastic simulation along with rigid simulation can be used in the many areas of designs, such as modification or optimization, stability analysis and evaluating field test data; It can be said that the use of simulation in the fields of design and optimization, especially during the initial and detailed design, should be considered more than other fields; In this research, by use of simulation, the effect of some design parameters such as slenderless ratio, maneuvering acceleration, propulsion curve, natural frequency of the structure, aerodynamic load distribution , etc. On issues such as flight and tracking behavior, stability and collision accuracy, has been examined; In cases such as: evaluating the initial error or veviation of the thurst vector or its curve, rolling speed, tracking of control commands, etc. aerolastic simulation gives a more realistic output compared to rigid simulation; Further more in cases such as investigating the effect of aerodynamic load distribution or stiffness ans and mass distribution, only aerolastic simulation is able to respond. Accordingly, the main orientation of this research is to develop an approach with acceptable accuracy and speed in order to simulate elastic projectiles in order to achieve some of the mentioned goals; However, due to the wide range of effective parameters and their interaction, in this study, only the role of thrust and body rigidity has been examined.

Keywords [فارسی]

  • Aeroelasticity
  • Aeroelastic flight simulation
  • Elastic air-vehicle
  • DESIGN PARAMETERS
  • Time domain stability analysis