Document Type : Original Article

Authors

1 Satellite Research Institute, Iranian Space Research Center, Tehran, Iran

2 Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran

3 Departments of Mechanics and Systems, University of Polytechnic of Tours, France

10.22034/jast.2021.294317.1077

Abstract

Regardless of the initiation or propagation procedure of crack in a gas turbine blade, the precise expectation of the fracture behavior, such as mixed-mode Stress Intensity Factors (SIF), plays a significant role in acquiring its operational life. Therefore, multilateral three-dimensional fracture solutions are required, including real-based mixed-mode loading (I/II/III) conditions and geometrical considerations. In this study, three-dimensional semi-elliptical crack in a gas turbine blade with various geometrical parameters and inclination angles under mixed-mode loading (I/II/III) conditions were investigated based on the employing finite element techniques and analytical procedure. In this context, the semi-elliptical crack has been considered in the critical zone of the rotating blade to achieve the effect of crack aspect ratio, rotational velocity, crack location, and mechanical properties. Fluid Solid Interaction (FSI) analysis was also performed in addition to solid functional enriched elements. Structural simulation is done at the speed of 83.776 m/s based on CFD simulation. The results indicated that Al Alloys blade shows a profitable resistance in crack propagation. Moreover, as the crack domain is near the location of x/c= 0.25 and 1.9 of crack front, the mode II SIF will be independent of rotational velocity and the blades' mechanical properties. Similarly, for the location of x/c= 1.1 in crack front, the mode III SIF is independent of rotational velocity and blades' mechanical properties.

Keywords

Main Subjects

Article Title [فارسی]

Mixed Mode (I/II/III) Stress Intensity Factors in Gas Turbine Blade Considering 3D Semi-elliptical Crack

Authors [فارسی]

  • Seyed mohammad navid ghoreishi 1
  • Nabi Mehri-Khansari 2
  • Houman rezaei 3

1 Satellite Research Institute, Iranian Space Research Center, Tehran, Iran

2 Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran

3 Departments of Mechanics and Systems, University of Polytechnic of Tours, France

Abstract [فارسی]

Regardless of the initiation or propagation procedure of crack in a gas turbine blade, the precise expectation of the fracture behavior, such as mixed-mode Stress Intensity Factors (SIF), plays a significant role in acquiring its operational life. Therefore, multilateral three-dimensional fracture solutions are required, including real-based mixed-mode loading (I/II/III) conditions and geometrical considerations. In this study, three-dimensional semi-elliptical crack in a gas turbine blade with various geometrical parameters and inclination angles under mixed-mode loading (I/II/III) conditions were investigated based on the employing finite element techniques and analytical procedure. In this context, the semi-elliptical crack has been considered in the critical zone of the rotating blade to achieve the effect of crack aspect ratio, rotational velocity, crack location, and mechanical properties. Fluid Solid Interaction (FSI) analysis was also performed in addition to solid functional enriched elements. Structural simulation is done at the speed of 83.776 m/s based on CFD simulation. The results indicated that Al Alloys blade shows a profitable resistance in crack propagation. Moreover, as the crack domain is near the location of x/c= 0.25 and 1.9 of crack front, the mode II SIF will be independent of rotational velocity and the blades' mechanical properties. Similarly, for the location of x/c= 1.1 in crack front, the mode III SIF is independent of rotational velocity and blades' mechanical properties.

Keywords [فارسی]

  • Stress intensity factor
  • Semi-elliptical crack
  • Gas Turbine Blade
  • Finite Element Analysis (FEA)
  • Ayhan, A., & Nied, H. J. I. J. f. N. M. i. E. (2002). Stress intensity factors for three‐dimensional surface cracks using enriched finite elements. 54(6), 899-921.
  • Ayhan, A. O. (2000). Finite element analysis of nonlinear deformation mechanisms in semiconductor packages.
  • Ayhan, A. O. J. I. J. o. F. (2007). Mixed mode stress intensity factors for deflected and inclined corner cracks in finite-thickness plates. 29(2), 305-317.
  • Ayhan, A. O. J. I. j. o. s., & structures. (2011). Three-dimensional fracture analysis using tetrahedral enriched elements and fully unstructured mesh. 48(3-4), 492-505.
  • Barsoum, R. S. J. I. j. f. n. m. i. e. (1976). On the use of isoparametric finite elements in linear fracture mechanics. 10(1), 25-37.
  • Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5), 601-620.
  • Benzley, S. J. I. J. f. N. M. i. E. (1974). Representation of singularities with isoparametric finite elements. 8(3), 537-545.
  • Bernstein, H. L., & Allen, J. M. (1992). Analysis of cracked gas turbine blades.
  • Boyce, M. P. (2011). Gas turbine engineering handbook: Elsevier.
  • Branco, R., & Antunes, F. (2008). Finite element modelling and analysis of crack shape evolution in mode-I fatigue Middle Cracked Tension specimens. Engineering fracture mechanics, 75(10), 3020-3037.
  • Branco, R., Antunes, F., Ricardo, L., Costa, J. J. F. E. i. A., & Design. (2012). Extent of surface regions near corner points of notched cracked bodies subjected to mode-I loading. 50, 147-160.
  • Branco, R., Rodrigues, D., Antunes, F. J. F., Materials, F. o. E., & Structures. (2008). Influence of through‐thickness crack shape on plasticity induced crack closure. 31(2), 209-220.
  • Bremberg, D., & Dhondt, G. J. E. F. M. (2008). Automatic crack-insertion for arbitrary crack growth. 75(3-4), 404-416.
  • Çetin, M., & Yaman, K. J. D. S. J. (2020). Location, Size and Orientation Effect of Semi-elliptical Surface Crack on the Fracture of a Type-3 Composite Pressure Vessel using J-integral Method. 70(1), 23-34.
  • Chen, A.-j., & Zeng, W.-j. (2006). Weight function for stress intensity factors in rotating thick-walled cylinder. Applied Mathematics and Mechanics, 27, 29-35.
  • Chen, L.-j., & Xie, L.-y. (2005). Prediction of high-temperature low-cycle fatigue life of aeroengine's turbine blades at low-pressure stage. JOURNAL-NORTHEASTERN UNIVERSITY NATURAL SCIENCE, 26(7), 673.
  • Citarella, R., Cricrì, G., Lepore, M., & Perrella, M. J. A. i. E. S. (2014). Thermo-mechanical crack propagation in aircraft engine vane by coupled FEM–DBEM approach. 67, 57-69.
  • Citarella, R., Giannella, V., Vivo, E., Mazzeo, M. J. T., & Mechanics, A. F. (2016). FEM-DBEM approach for crack propagation in a low pressure aeroengine turbine vane segment. 86, 143-152.
  • arrahi, G., Tirehdast, M., Abad, E. M. K., Parsa, S., & Motakefpoor, M. (2011). Failure analysis of a gas turbine compressor. Engineering Failure Analysis, 18(1), 474-484.
  • Fawaz, S. J. E. F. M. (1998). Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front. 59(3), 327-342.
  • Fett, T. (2002). Stress intensity factors and T-stress for single and double-edge-cracked circular disks under mixed boundary conditions. Engineering fracture mechanics, 69(1), 69-83.
  • Fett, T., & Bahr, H. (1999). Mode I stress intensity factors and weight functions for short plates under different boundary conditions. Engineering fracture mechanics, 62(6), 593-606.
  • Fossati, M., Colombo, D., Manes, A., & Giglio, M. J. E. f. m. (2011). Numerical modelling of crack growth profiles in integral skin-stringer panels. 78(7), 1341-1352
  • Funazaki, K., Tarukawa, Y., Kudo, T., Matsuno, S., Imai, R., & Yamawaki, S. (2001). Heat Transfer Characteristics of an Integrated Cooling Configuration for Ultra-High Temperature Turbine Blades: Experimental and Numerical Investigations. Paper presented at the ASME Turbo Expo 2001: Power for Land, Sea, and Air.
  • arcia‐Manrique, J., Camas, D., Gonzalez‐Herrera, A. J. F., Materials, F. o. E., & Structures. (2017). Study of the stress intensity factor analysis through thickness: methodological aspects. 40(8), 1295-1308
  • Garzon, V. E., & Darmofal, D. L. (2003). Impact of geometric variability on axial compressor performance. Turbomach., 125(4), 692-703.
  • Ghatak, A., & Robi, P. (2016). Modification of Larson–Miller parameter technique for predicting creep life of materials. Transactions of the Indian Institute of Metals, 69(2), 579-583.
  • Guo, X., Zheng, W., Xiao, C., Li, L., Antonov, S., Zheng, Y., & Feng, Q. (2019). Evaluation of microstructural degradation in a failed gas turbine blade due to overheating. Engineering Failure Analysis, 103, 308-318.
  • Han, Q., Wang, Y., Yin, Y., & Wang, D. J. E. F. M. (2015). Determination of stress intensity factor for mode I fatigue crack based on finite element analysis. 138, 118-126.
  • Hirakawa, K., Toyama, K., & Kubota, M. J. I. j. o. f. (1998). The analysis and prevention of failure in railway axles. 20(2), 135-144.
  • Hou, J., Wicks, B. J., & Antoniou, R. A. (2002). An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. Engineering Failure Analysis, 9(2), 201-211.
  • Jin, Z., & Wang, X. (2013). Weight functions for the determination of stress intensity factor and T‐stress for semi‐elliptical cracks in finite thickness plate. Fatigue & Fracture of Engineering Materials & Structures, 36(10), 1051-1066.
  • Jones, I., & Rothwell, G. (2001). Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinders. Engineering Fracture Mechanics, 68(4), 435-454.
  • Kai-ping, M., & Chun-tu, L. (2004). Semi-weight function method on computation of stress intensity factors in dissimilar materials. Applied Mathematics and Mechanics, 25(11), 1241-1248.
  • Kersey, R., Staroselsky, A., Dudzinski, D., & Genest, M. J. I. j. o. f. (2013). Thermomechanical fatigue crack growth from laser drilled holes in single crystal nickel based superalloy. 55, 183-193.
  • Kirthan, L., Hegde, R., Suresh, B., & Kumar, R. G. J. P. M. S. (2014). Computational analysis of fatigue crack growth based on stress intensity factor approach in axial flow compressor blades. 5, 387-397.
  • Knott, J. F. (1973). Fundamentals of fracture mechanics: Gruppo Italiano Frattura.
  • Koshima, T., & Okada, H. J. E. F. M. (2015). Three-dimensional J-integral evaluation for finite strain elastic–plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology. 135, 34-63.
  • Kotousov, A., Berto, F., Lazzarin, P., & Pegorin, F. (2012). Three dimensional finite element mixed fracture mode under anti-plane loading of a crack. Theoretical and Applied Fracture Mechanics, 62, 26-33.
  • Kumar, A., Keane, A., Nair, P., & Shahpar, S. (2006). Robust design of compressor blades against manufacturing variations. Paper presented at the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
  • Kumar, A., Nair, P., Keane, A., & Shahpar, S. (2005). Probabilistic performance analysis of eroded compressor blades. Paper presented at the ASME 2005 power conference.
  • Kumari, S., Satyanarayana, D., & Srinivas, M. J. E. f. a. (2014). Failure analysis of gas turbine rotor blades. 45, 234-244.
  • Lakshminarasimha, A., Boyce, M., & Meher-Homji, C. (1994). Modeling and analysis of gas turbine performance deterioration.
  • Lange, A., Vogeler, K., Schrapp, H., & Clemen, C. (2009). Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation. Paper presented at the ASME Turbo Expo 2009: Power for Land, Sea, and Air.
  • Li, Y.-G. (2010). Gas turbine performance and health status estimation using adaptive gas path analysis. Journal of engineering for gas turbines and power, 132(4).
  • Lin, X., & Smith, R. (1998a). Fatigue growth prediction of internal surface cracks in pressure vessels.
  • Lin, X., & Smith, R. (1998b). Fatigue growth prediction of internal surface cracks in pressure vessels. Journal of pressure vessel technology, 120(1), 17-23.
  • Liu, H., Yang, X., Li, S., & Shi, D. J. I. J. o. M. S. (2020). A numerical approach to simulate 3D crack propagation in turbine blades. 171, 105408.
  • Maschke, H.-G., & Kuna, M. (1985). A review of boundary and finite element methods in fracture mechanics. Theoretical and Applied Fracture Mechanics, 4(3), 181-189.
  • Mattheck, C., Morawietz, P., & Munz, D. (1983). Stress intensity factor at the surface and at the deepest point of a semi-elliptical surface crack in plates under stress gradients. International Journal of Fracture, 23(3), 201-212.
  • Mattheck, C., Munz, D., & Stamm, H. (1983). Stress intensity factor for semi-elliptical surface cracks loaded by stress gradients. Engineering fracture mechanics, 18(3), 633-641. doi:https://doi.org/10.1016/0013-7944(83)90056-5
  • Mavrothanasis, F., & Pavlou, D. (2007). Mode-I stress intensity factor derivation by a suitable Green's function. Engineering analysis with boundary elements, 31(2), 184-190.
  • Montoya, J. (1966). Coupled bending and torsional vibrations in a twisted rotating blade. The Brown Boveri Review, 53(3), 216-230.
  • Morini, M., Pinelli, M., Spina, P. R., & Venturini, M. (2011). Numerical analysis of the effects of nonuniform surface roughness on compressor stage performance. Journal of engineering for gas turbines and power, 133(7).
  • Mouna, A., Boukortt, H., Meliani, M. H., Muthana, B. D., Suleiman, R. K., Sorour, A. A., . . . Azari, Z. (2019). CORROSION EFFECT, CONSTRAINT AND PATH ORIENTATION ESTIMATED IN CRACKED GAS TURBINE BLADE. Engineering Failure Analysis, 104345.
  • Nikishkov, G., & Atluri, S. J. I. j. f. n. m. i. e. (1987). Calculation of fracture mechanics parameters for an arbitrary three‐dimensional crack, by the ‘equivalent domain integral’method. 24(9), 1801-1821.
  • Noda, N.-A., & Xu, C. (2008). Controlling parameter of the stress intensity factors for a planar interfacial crack in three-dimensional bimaterials. International Journal of Solids and Structures, 45(3), 1017-1031.
  • Nowell, D., Dini, D., & Hills, D. J. E. f. m. (2006). Recent developments in the understanding of fretting fatigue. 73(2), 207-222.
  • O’Hara, P., Duarte, C. A., & Eason, T. J. E. F. M. (2016). A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces. 163, 274-302.
  • Okada, H., Kawai, H., & Araki, K. J. E. F. M. (2008). A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements. 75(15), 4466-4485.
  • Okada, H., Kawai, H., Tokuda, T., & Fukui, Y. J. I. j. o. f. (2013). Fully automated mixed mode crack propagation analyses based on tetrahedral finite element and VCCM (virtual crack closure-integral method). 50, 33-39.
  • Okada, H., Koya, H., Kawai, H., Li, Y., & Osakabe, K. J. E. F. M. (2016). Computations of stress intensity factors for semi-elliptical cracks with high aspect ratios by using the tetrahedral finite element (fully automated parametric study). 158, 144-166.
  • Peng, X., Atroshchenko, E., Kerfriden, P., & Bordas, S. P. A. J. I. J. o. F. (2017). Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment. 204(1), 55-78.
  • Poursaeidi, E., Aieneravaie, M., & Mohammadi, M. (2008). Failure analysis of a second stage blade in a gas turbine engine. Engineering Failure Analysis, 15(8), 1111-1129.
  • Poursaeidi, E., & Salavatian, M. J. E. F. A. (2009). Fatigue crack growth simulation in a generator fan blade. 16(3), 888-898.
  • Rajaram, H., Socrate, S., & Parks, D. J. E. F. M. (2000). Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors. 66(5), 455-482.
  • Sanati, H., Amini, A., Reshadi, F., Soltani, N., Faraji, G., & Zalnezhad, E. (2015). The stress intensity factors (SIFs) of cracked half-plane specimen in contact with semi-circular object. Theoretical and Applied Fracture Mechanics, 75, 104-112.
  • Sarraf, C., Nouri, H., Ravelet, F., & Bakir, F. (2011). Experimental study of blade thickness effects on the overall and local performances of a controlled vortex designed axial-flow fan. Experimental Thermal and Fluid Science, 35(4), 684-693.
  • Seifi, R. (2015). Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method. Theoretical and Applied Fracture Mechanics, 75, 113-123.
  • Shivakumar, K., Tan, P., & Newman Jr, J. (1988). A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies.
  • Shojaeifard, M., Sajedin, A., & Khalkhali, A. J. M. M. E. (2019). Effectiveness of Blade Thickness Distribution on the Turbocharger Turbine Aerostatic Performance. 19(11), 2667-2677.
  • Suder, K. L., Chima, R. V., Strazisar, A. J., & Roberts, W. B. (1995). The effect of adding roughness and thickness to a transonic axial compressor rotor.
  • Sukumar, N., Dolbow, J., & Moës, N. J. I. J. o. F. (2015). Extended finite element method in computational fracture mechanics: a retrospective examination. 196(1-2), 189-206.
  • Tao, C., Zhong, P., & Li, R. (2000). Failure analysis and prevention for rotor in aero-engine. National Defence Industry Press, China, 102-163.
  • Tsang, D., Oyadiji, S., & Leung, A. (2007). Two-dimensional fractal-like finite element method for thermoelastic crack analysis. International Journal of Solids and Structures, 44(24), 7862-7876.
  • Tweed, J., Das, S., & Rooke, D. (1972). The stress intensity factors of a radial crack in a finite elastic disc. International Journal of Engineering Science, 10(3), 323-335.
  • Tweed, J., & Rooke, D. (1973). The stress intensity factor of an edge crack in a finite elastic disc. International Journal of Engineering Science, 11(1), 65-73.
  • Vigdergauz, S. (1996). An effective method for computing the elastic field in a finite cracked disk. Engineering fracture mechanics, 53(4), 545-556.
  • Viswanathan, R., & Dolbec, A. (1987). Life assessment technology for combustion turbine blades.
  • Wang, X. (2003). Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates. Engineering fracture mechanics, 70(6), 731-756. doi:https://doi.org/10.1016/S0013-7944(02)00081-4
  • Wang, Y., & Susmel, L. (2016). The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading. International Journal of Fatigue, 83, 135-149.
  • Wang, Y., Tham, L., Lee, P., & Tsui, Y. (2003). A boundary collocation method for cracked plates. Computers & structures, 81(28), 2621-2630.
  • Wee, J.-W., Chudnovsky, A., Choi, B.-H. J. I. J. o. S., & Structures. (2020). Discontinuous slow crack growth modeling of semi-elliptical surface crack in high density polyethylene using crack layer theory. 185, 65-77.
  • Witek, L. J. E. F. A. (2015). Simulation of crack growth in the compressor blade subjected to resonant vibration using hybrid method. 49, 57-66.
  • Witek, L. J. F. o. A. S. (2012). Numerical simulation of fatigue fracture of the turbine disc. 2012(4), 114-122.
  • Xi, N., Zhong, P., Huang, H., Yan, H., & Tao, C. J. E. f. a. (2000). Failure investigation of blade and disk in first stage compressor. 7(6), 385-392.
  • Xiao, J., Wang, G., Tu, S., & Xuan, F. J. E. F. M. (2020). Engineering estimation method of unified constraint parameters for semi-elliptical surface cracks in plates. 106935.
  • Yang, S., Hui, B., & Guo-tai, F. (2011). Investigation and application of high accuracy schemes in numerical simulation of turbine flow field. Paper presented at the 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC).
  • Yasmina, A., Bacha, N., & Semmar, D. (2008). Probabilistic model for pitting corrosion and fatigue life estimation of turbine blades [J]. Integritet I Vek Konstrukcija, 8(1), 3-12.
  • Ying, Y., Cao, Y., Li, S., Li, J., & Guo, J. (2016). Study on gas turbine engine fault diagnostic approach with a hybrid of gray relation theory and gas-path analysis. Advances in Mechanical Engineering, 8(1), 1687814015627769.
  • Yu, Z.-Y., Zhu, S.-P., Liu, Q., & Liu, Y. (2017). A new energy-critical plane damage parameter for multiaxial fatigue life prediction of turbine blades. Materials, 10(5), 513.
  • Zhou, D., Wei, T., Huang, D., Li, Y., & Zhang, H. (2020). A gas path fault diagnostic model of gas turbines based on changes of blade profiles. Engineering Failure Analysis, 104377.