Document Type : Original Article
Authors
Faculty of Aerospace Engineering, Amirkabir University of Technology
Abstract
This study focuses on improving performance of a supercritical wing equipped with winglets at different cant angles. This study aims to experimentally investigate the variation of aerodynamic performance of a supercritical wing of NASA Sc (2)-0410 airfoil at lower Reynolds numbers with winglets at various cant angles. The tests were performed by measuring the lift and drag force using a three-component balance within a broad range of angle of attack from -4 to 20 degrees and at three different subsonic flow velocities. Results include changes in lift, drag, and aerodynamic performance for each winglet cant angle compared to the baseline wing. The results show that winglets generally increase the lift force and decrease the drag force by decreasing the size and strength of the wingtip vortices. Moreover, the optimal winglet for each case is extracted based on the aerodynamic performance provided by each winglet. In order to better and more accurately compare the effect of different mounting angles of the winglet on the aerodynamic performance of the base wing, the impact of each winglet is shown separately. Accordingly, it is observed that the winglets with angles of 0o and 15 o, namely W0 and W15, have shown good performance in increasing the lift coefficient. Also, the winglet with 90 degrees has shown good performance in creating the least drag force.
Keywords
Main Subjects
Article Title [Persian]
Investigating the Effect of Different Winglet Cant Angles on a Supercritical Wing Aerodynamic Efficiency at Lower Reynolds numbers
Authors [Persian]
- Parisa Ghanooni
- Mostafa Kazemi
- Mahmoud Mani
Faculty of Aerospace Engineering, Amirkabir University of Technology
Abstract [Persian]
This study focuses on improving performance of a supercritical wing equipped with winglets at different cant angles. This study aims to experimentally investigate the variation of aerodynamic performance of a supercritical wing of NASA Sc (2)-0410 airfoil at lower Reynolds numbers with winglets at various cant angles. The tests were performed by measuring the lift and drag force using a three-component balance within a broad range of angle of attack from -4 to 20 degrees and at three different subsonic flow velocities. Results include changes in lift, drag, and aerodynamic performance for each winglet cant angle compared to the baseline wing. The results show that winglets generally increase the lift force and decrease the drag force by decreasing the size and strength of the wingtip vortices. Moreover, the optimal winglet for each case is extracted based on the aerodynamic performance provided by each winglet. In order to better and more accurately compare the effect of different mounting angles of the winglet on the aerodynamic performance of the base wing, the impact of each winglet is shown separately. Accordingly, it is observed that the winglets with angles of 0o and 15 o, namely W0 and W15, have shown good performance in increasing the lift coefficient. Also, the winglet with 90 degrees has shown good performance in creating the least drag force.
Keywords [Persian]
- Experimental Aerodynamics
- Wing Tip Vortex
- Supercritical Wing
- Winglet
- Aerodynamic Coefficients