Document Type : Original Article

Authors

1 Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, IRAN

2 Iran Space Research Institute, Tehran, IRAN

Abstract

Epoxy is among the most important polymers, which is extensively employed in various technologies and applications. Nevertheless, epoxy polymers present low thermal conductivities and thus the enhancement of their thermal conductivity is an important research topic. Carbon nanotubes (CNTs) owing to their excellent thermal conductivities have been widely considered for the enhancement of the thermal conduction of epoxy polymers. In this work, we developed a combined molecular dynamics finite element multiscale modelling to investigate the heat transfer along CNT/epoxy nanocomposites. To this aim, the heat transfer between the CNT and epoxy atoms at the nanoscale was explored using the atomistic classical molecular dynamics simulations. In this case, we particularly evaluated the interfacial thermal conductance between the polymer and fillers. We finally constructed the continuum models of polymer nanocomposites representative volume elements using the finite element method in order to evaluate the effective thermal conductivity. The developed multiscale modelling enabled us to systematically analyze the effects of CNT fillers geometry (aspect ratio), diameter and volume fraction on the effective thermal conductivity of nanocomposites. Our results suggest that the interfacial thermal conductance between the CNT additives and epoxy polymer dominate the heat transfer mechanism at the nanoscale.
The obtained findings in this study provide good vision regarding the enhancement of thermal conductivity
of polymeric materials using highly conductive nanofillers.

Keywords

Main Subjects

[1]    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. (1995). doi:10.1006/jcph.1995.1039.
[2]    L. Lindsay, D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B - Condens. Matter Mater. Phys. (2010). doi:10.1103/PhysRevB.81.205441.
[3]    H. Sun, The COMPASS force field: Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci. (1998). doi:10.1016/S1089-3156(98)00042-7.
[4]    H. Sun, COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B. (1998). doi:10.1021/jp980939v.
[5]    B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites, Carbon N. Y. 60 (2013) 356–365. doi:https://doi.org/10.1016/j.carbon.2013.04.048.
[6]    R. Ganji, A. Pakniat, M.R. Armat, M. Tabatabaeichehr, H. Mortazavi, The effect of self-management educational program on pain intensity in elderly patients with knee osteoarthritis: A randomized clinical trial, Open Access Maced. J. Med. Sci. (2018). doi:10.3889/oamjms.2018.225.
[7]    H. Mortazavi, Could art therapy reduce the death anxiety of patients with advanced cancer? An interesting question that deserves to be investigated, Indian J. Palliat. Care. (2018). doi:10.4103/IJPC.IJPC_7_18.
[8]    C. Li, A. Strachan, Molecular simulations of crosslinking process of thermosetting polymers, Polymer (Guildf). (2010). doi:10.1016/j.polymer.2010.10.033.
[9]    G. Levita, S. De Petris, A. Marchetti, A. Lazzeri, Crosslink density and fracture toughness of epoxy resins, J. Mater. Sci. (1991). doi:10.1007/BF01130180.
[10] M. Ogata, N. Kinjo, T. Kawata, Effects of crosslinking on physical properties of phenol–formaldehyde novolac cured epoxy resins, J. Appl. Polym. Sci. (1993). doi:10.1002/app.1993.070480403.
[11]   I. Yarovsky, E. Evans, Computer simulation of structure and properties of crosslinked polymers: Application to epoxy resins, Polymer (Guildf). (2001). doi:10.1016/S0032-3861(01)00634-6.
[12]   C. Li, A. Strachan, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA, Polymer (Guildf). (2011). doi:10.1016/j.polymer.2011.04.041.
[13]   F.G. Garcia, B.G. Soares, V.J.R.R. Pita, R. Sánchez, J. Rieumont, Mechanical properties of epoxy networks based on DGEBA and aliphatic amines, J. Appl. Polym. Sci. (2007). doi:10.1002/app.24895.
[14]   B. Mortazavi, H. Yang, F. Mohebbi, G. Cuniberti, T. Rabczuk, Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation, Appl. Energy. (2017). doi:10.1016/j.apenergy.2017.05.175.
[15]   C.F. Carlborg, J. Shiomi, S. Maruyama, Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices, Phys. Rev. B - Condens. Matter Mater. Phys. (2008). doi:10.1103/PhysRevB.78.205406.
[16]   S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions, Nat. Mater. (2003). doi:10.1038/nmat996.
[17]   Z.Y. Ong, E. Pop, Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B - Condens. Matter Mater. Phys. (2010). doi:10.1103/PhysRevB.81.155408.
[18]   W. Yan, X. Gao, W. Xu, C. Ding, Z. Luo, Z. Zhang, Heat transfer performance of epoxy resin Flows in a horizontal twisted tube, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.08.013.
[19]   F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer (Guildf). 47 (2006) 2036–2045. doi:https://doi.org/10.1016/j.polymer.2006.01.029.
[20]   A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. (2011). doi:10.1038/nmat3064.
[21]   C.W. Chang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes, Phys. Rev. Lett. 97 (2006) 85901. doi:10.1103/PhysRevLett.97.085901.
[22]   B. Mortazavi, J. Bardon, S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study, Comput. Mater. Sci. (2013). doi:10.1016/ j.commatsci.2012.11.035.
[23]   K. Yang, M. Gu, Y. Guo, X. Pan, G. Mu, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon N. Y. 47 (2009) 1723–1737. doi:https://doi.org/10.1016/ j. carbon.2009.02.029.
[24] P.C. Ma, J.-K. Kim, B.Z. Tang, Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites, Compos. Sci. Technol. 67 (2007) 2965–2972. doi:https://doi.org/10.1016/ j.compscitech.2007.05.006.
[25] K.W. Garrett, H.M. Rosenberg, The thermal conductivity of epoxy-resin / powder composite materials, J. Phys. D. Appl. Phys. (1974). doi:10.1088/0022-3727/7/9/311.
[26] M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett. (2002). doi:10.1063/1.1469696.
[27] L.E. Evseeva, S.A. Tanaeva, Thermal conductivity of micro-and nanostructural epoxy composites at low temperatures, Mech. Compos. Mater. (2008). doi:10.1007/s11029-008-0010-1.
[28] Y.S. Song, J.R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon N. Y. 43 (2005) 1378–1385. doi:https://doi.org/10.1016/j.carbon.2005.01.007.
P.C. Ma, B.Z. Tang, J.K. Kim, Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites, Carbon N. Y. (2008). doi:10.1016/j.carbon.2008.06.048.