[1] J.P. Gardner, J.C. Mather, M. Clampin, R. Doyon, M.A. Greenhouse, H.B. Hammel, J.B. Hutchings, P. Jakobsen, S.J. Lilly, K.S. Long, The james webb space telescope, Space Sci. Rev. 123 (2006) 485–606.
[2] J. Krist, In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century, ed, P. Kalas (Berkeley, CA Univ. California). 32 (2007).
[3] M. Hechler, J. Cobos, Herschel, Planck and Gaia orbit design, in: Libr. Point Orbits Appl., World Scientific, 2003: pp. 115–135.
[4] M. Machula, G. Sandhoo, Rendezvous and docking for space exploration, in: 1st Sp. Explor. Conf. Contin. Voyag. Discov., 2005: p. 2716.
[5] H.D. Curtis, Orbital mechanics for engineering students, Butterworth-Heinemann, 2013.
[6] A.L. Kunitsyn, The stability of triangular libration points in the photogravitational three-body problem, J. Appl. Math. Mech. 64 (2000) 757–763.
[7] S. Kikuchi, Y. Tsuda, M. Yoshikawa, J. Kawaguchi, Stability Analysis of Coupled Orbit–Attitude Dynamics Around Asteroids Using Finite-Time Lyapunov Exponents, J. Guid. Control. Dyn. 42 (2019) 1289–1305.
[8] E. Lega, M. Guzzo, Three-dimensional representations of the tube manifolds of the planar restricted three-body problem, Phys. D Nonlinear Phenom. 325 (2016) 41–52.
[9] M. Bakhtiari, K. Daneshjou, E. Abbasali, A new approach to derive a formation flying model in the presence of a perturbing body in inclined elliptical orbit: relative hovering analysis, Astrophys. Space Sci. 362 (2017). https://doi.org/10.1007/s10509-016-2968-9.
[10] X. Hou, X. Xin, J. Feng, Genealogy and stability of periodic orbit families around uniformly rotating asteroids, Commun. Nonlinear Sci. Numer. Simul. 56 (2018) 93–114.
[11] B. Wong, R. Patil, A. Misra, Attitude dynamics of rigid bodies in the vicinity of the Lagrangian points, J. Guid. Control. Dyn. 31 (2008) 252–256.
[12] R.W. Farquhar, The Control and Use of Libration-Point Satellites, Ph. D. Dissertation, Dept. of Aeronautics and Astronautics, Stanford University. Stanford, CA, 1968, (1968).
[13] R.W. Farquhar, A.A. Kamel, Quasi-periodic orbits about the translunar libration point, Celest. Mech. 7 (1973) 458–473.
[14] A. Casal, M. Freedman, A Poincaré-Lindstedt approach to bifurcation problems for differential-delay equations, IEEE Trans. Automat. Contr. 25 (1980) 967–973.
[15] J. V Breakwell, J. V Brown, The ‘halo’family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem, Celest. Mech. 20 (1979) 389–404.
[16] K.C. Howell, Three-dimensional, periodic, ‘halo’orbits, Celest. Mech. 32 (1984) 53–71.
[17] Y.-J. Qian, X.-D. Yang, G.-Q. Zhai, W. Zhang, Planar periodic orbits’ construction around libration points with invariant manifold technique, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233 (2019) 498–509.
[18] J. Singh, V.U. Cyril-Okeme, Perturbed Robe’s circular restricted three-body problem under an oblate primary, New Astron. 34 (2015) 114–119.
[19] V.K. Srivastava, J. Kumar, B.S. Kushvah, Regularization of circular restricted three-body problem accounting radiation pressure and oblateness, Astrophys. Space Sci. 362 (2017) 49.
[20] V. V Markellos, K.E. Papadakis, E.A. Perdios, Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness, Astrophys. Space Sci. 245 (1996) 157–164.
[21] J. Singh, Nonlinear stability in the restricted three-body problem with oblate and variable mass, Astrophys. Space Sci. 333 (2011) 61–69.
[22] L. Zhang, P. Ge, High precision dynamic model and control considering J2 perturbation for spacecraft hovering in low orbit, Adv. Sp. Res. 67 (2021) 2185–2198.
[23] J.A. Arredondo, J. Guo, C. Stoica, C. Tamayo, On the restricted three body problem with oblate primaries, Astrophys. Space Sci. 341 (2012) 315–322.
[24] D. Guzzetti, K.C. Howell, Coupled orbit-attitude dynamics in the three-body problem: A family of orbit-attitude periodic solutions, in: AIAA/AAS Astrodyn. Spec. Conf., 2014: p. 4100.
[25] A. Celletti, G. Pucacco, D. Stella, Lissajous and Halo orbits in the restricted three-body problem, J. Nonlinear Sci. 25 (2015) 343–370.
[26] E. Canalias, J.J. Masdemont, Homoclinic and heteroclinic transfer trajectories between Lyapunov orbits in the Sun-Earth and Earth-Moon systems, Discret. Contin. Dyn. Syst. 14 (2006) 261–279.