Document Type : Original Article


Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran



Flexible ropes have wide-ranging applications in aerospace engineering, yet accurately measuring their motion state without disrupting dynamic characteristics remains a challenge. This study introduces a visual measurement method aimed at precisely assessing flexible rope motion to support the development and validation of an accurate cable dynamics model. Addressing non-uniform movement speeds attributed to the rope's large length-diameter ratio, a novel tether edge segmentation operator is proposed to delineate motion blur regions into exposure beginning and ending time tethers. This operator enhances accuracy over existing centerline extraction methods, particularly in asymmetric motion blur regions. The proposed approach not only resolves accuracy issues during high-speed motion but also leverages the camera's inherent image acquisition frame rate, reducing system complexity and cost. Validation of the material point tracking algorithm through mathematical and physical simulations underscores its effectiveness in monitoring any point on the tether. Furthermore, verifying the tether dynamics model through the absolute nodal coordinate method highlights the novelty and significance of this research in advancing aerospace engineering applications.


Main Subjects