Document Type : Original Article

Authors

Faculty of Aerospace Engineering of K. N. Toosi University of Technology

10.22034/jast.2022.357423.1128

Abstract

Feed pumps play a crucial role in the dynamics of hydraulic systems. The surge phenomenon is a common type of instability in pumps and compressors. This phenomenon is a systematic instability and is influenced by the dynamics of all components of a hydraulic system, including tank, valves, suction pipes, impeller and the turbomachine itself. Surge emerges when a pump is operating with a positive slope of head and flow curve. The coincidence of the surge phenomenon with cavitation results in a damaging phenomenon called "auto-oscillation." Thus, predicting a pump's behavior outside the design points is of great importance particularly in low flow rates. In this paper, the characteristic curve of a high-speed centrifugal pump is extracted using CFD analysis to determine the stable operating range of the pump. The studied pump consists of an inducer, impeller and volute. The simulation in the pump was carried out three-dimensionally due to the asymmetry of geometry. The simulations are performed over a wide range of flow rates and the characteristic curve of the pump (head coefficient in terms of mass flow rate coefficient) is extracted. Finally, the range of stable operation of the pump is determined using its characteristic curve.

Keywords

Main Subjects

Article Title [Persian]

Determination of a High-speed Centrifugal Pump's Stable Performance Range by Computational Fluid Dynamics

Authors [Persian]

  • Ali Cheraghi
  • Reza Ebrahimi

Faculty of Aerospace Engineering of K. N. Toosi University of Technology

Abstract [Persian]

Feed pumps play a crucial role in the dynamics of hydraulic systems. The surge phenomenon is a common type of instability in pumps and compressors. This phenomenon is a systematic instability and is influenced by the dynamics of all components of a hydraulic system, including tank, valves, suction pipes, impeller and the turbomachine itself. Surge emerges when a pump is operating with a positive slope of head and flow curve. The coincidence of the surge phenomenon with cavitation results in a damaging phenomenon called "auto-oscillation." Thus, predicting a pump's behavior outside the design points is of great importance particularly in low flow rates. In this paper, the characteristic curve of a high-speed centrifugal pump is extracted using CFD analysis to determine the stable operating range of the pump. The studied pump consists of an inducer, impeller and volute. The simulation in the pump was carried out three-dimensionally due to the asymmetry of geometry. The simulations are performed over a wide range of flow rates and the characteristic curve of the pump (head coefficient in terms of mass flow rate coefficient) is extracted. Finally, the range of stable operation of the pump is determined using its characteristic curve.

Keywords [Persian]

  • centrifugal pump
  • instability
  • surge
  • CFD
  • the characteristic curve