Document Type : Original Article

Authors

Islamic Azad University Science and Research Branch

10.22034/jast.2022.357363.1126

Abstract

The compressor blade is responsible for increasing the flow pressure. By adding a blade behind the main blade, the compressor performance can be improved by increasing the pressure ratio and reducing the weight. The tandem improves the performance and increases the compressor absorption coefficient by increasing the pressure ratio, preventing flow separation and controlling the boundary layer. This has led compressor designers to seek to reduce weight, increase pressure ratio and increase efficiency by using tandem. The geometry of the compressor blade and stage along with its tandem has been obtained from previous valid sources and has been drawn in three dimensions and numerically analyzed. Then the various parameters for the blade and the tandem are examined separately and the pressure and velocity vectors are plotted to show the control of the vortices, which results in improved compressor performance. The characteristic curve of the compressor and the pressure ratio for this particular tandem are also plotted at the end. Calculations show that by using the tandem and removing the excess vortex after the main blade, we will see a 28.5% increase in total pressure, a 15% decrease in relative mach number and a 1.5% decrease in entropy.

Keywords

Main Subjects

Article Title [Persian]

Improving the performance and work-absorbing capacity of the axial-flow compressor by using tandem blades.

Authors [Persian]

  • Alireza Sekhavat Benis
  • Reza Aghaei Togh

Islamic Azad University Science and Research Branch

Abstract [Persian]

The compressor blade is responsible for increasing the flow pressure. By adding a blade behind the main blade, the compressor performance can be improved by increasing the pressure ratio and reducing the weight. The tandem improves the performance and increases the compressor absorption coefficient by increasing the pressure ratio, preventing flow separation and controlling the boundary layer. This has led compressor designers to seek to reduce weight, increase pressure ratio and increase efficiency by using tandem. The geometry of the compressor blade and stage along with its tandem has been obtained from previous valid sources and has been drawn in three dimensions and numerically analyzed. Then the various parameters for the blade and the tandem are examined separately and the pressure and velocity vectors are plotted to show the control of the vortices, which results in improved compressor performance. The characteristic curve of the compressor and the pressure ratio for this particular tandem are also plotted at the end. Calculations show that by using the tandem and removing the excess vortex after the main blade, we will see a 28.5% increase in total pressure, a 15% decrease in relative mach number and a 1.5% decrease in entropy.

Keywords [Persian]

  • Compressor
  • Rotor
  • Tandem
  • Compressor characteristics
  • Performance improving