Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Tarbiat Modares University

2 24 street No 310/3

10.22034/jast.2024.428886.1170

Abstract

A complete miss distance analysis of true proportional navigation is carried out due to initial heading error, step target maneuver, and seeker noise sources assuming a first-order control system using forward and adjoint methods. For this purpose, linearized equations are utilized for deterministic and stochastic analyses. Worst case analysis shows that the maximum value of the final time-miss distance plots reduces by increasing the value of the effective navigation ratio due to initial heading error and step target acceleration. The number of peaks of these curves obeys the relation of the effective navigation ratio minus 1 (or 2) due to heading error (or step target maneuver). Moreover, the normalized miss coefficients due to seeker noise sources and miss due to random target maneuver are computed and approximate formulas are presented using the curve fitting method. This leads to an approximate formula for miss distance budget. Therefore, optimum values of the effective navigation ratio and control system time constant are obtained. Finally, the preferred values of these parameters are calculated for increased RMS miss of 5%, 10%, and 20% compared to its minimum value for two scenarios.

Keywords

Main Subjects