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Significant attention has been given to the field of multi-agent systems 

in recent years due to its potential to solve complex problems that 

cannot be addressed by a single agent. One such problem is the 

cooperative search and coverage application, which requires multiple 

agents to efficiently search and cover a given area. However, the 

effectiveness of such systems is dependent on various factors, including 

mission definition parameters and the approach used to achieve mission 

performance optimality. In this paper, an optimal strategy for 

segregating multi-agent missions for search and coverage applications 

is proposed. The proposed strategy involves dividing a single mission 

into several simultaneous missions based on the optimal division of the 

environment that ensures system performance optimality while 

achieving a common goal. The mission area is divided into sub-areas, 

and each sub-area is assigned to specific agents to improve overall 

system performance. The effectiveness of the proposed strategy is 

demonstrated through simulations and relevant comparisons. 
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Cooperative search and coverage 

 

 

 
DOI : 
doi.org/10.22034/jast.2023.403842.1156 

 

Introduction 

The use of multi-agent systems has gained 

significant attention due to their capabilities in 

various applications. In particular, employing 

multiple robots equipped with advanced sensors 

and communication equipment for cooperative 

search and coverage in a given region can 

significantly increase the likelihood of mission 

success. This paper focuses on the multi-agent 

cooperative search and coverage (MACSC) 

application where a team of robots aims to find 

several unknown targets scattered in a given 

surveillance region while minimizing uncertainty 

[1- 3]. In this mission, each robot maintains an 

individual probability map that is updated based on 

information gathered from its sensors. The 

probability maps are then shared and fused with 

neighboring robots to update each other's maps. By 

integrating the fused information into the 
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cooperative path-planning strategy, robots 

converge to regions with a high probability of 

target existence to find targets and reduce 

uncertainty. Therefore, addressing issues related to 

the environment, information fusion, and path 

planning are crucial in solving cooperative search 

and coverage problems. The environment in which 

agents operate can be represented by a map that 

serves as their knowledge base. To create this map, 

the search area is divided into smaller cells, each 

associated with probability or uncertainty values. 

While most research assumes a convex polygon 

environment, some studies consider more complex 

and realistic environments with obstacles . Each 

robot updates its search map based on its sensory 

information, but the best overall knowledge of the 

search region can only be obtained through the 

fusion of exchanged sensory information with 

other robots. Bayesian theory [4] and Dempster-

Shafer theory [5, 6] are commonly used fusion 
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strategies. Two evidential map-building 

approaches based on these theories were proposed 

in [7] for multi-robot cooperative search and 

coverage in an uncertain environment. In another 

study [8], a consensus-like distributed fusion 

scheme was proposed to fuse the probability maps 

of robots after linearizing the Bayesian update and 

introducing a nonlinear transformation of the 

probability map to simplify computation. 

The efficiency of the Cooperative Search and 

Coverage (CSC) problem heavily relies on the path 

planning for multi-agents [9]. This can be 

formulated as an optimization problem that aims to 

minimize or maximize the team objective function 

while taking into account a set of equality and/or 

inequality constraints. To date, various methods 

have been explored to improve agent path 

planning, including Dynamic Programming (DP) 

[2, 10], Neural Networks (NNs) [11], and 

Reinforcement Learning (RL) [12-14], gradient-

based optimization [15, 16], Artificial Potential 

Field (APF) [17, 18], Meta-heuristic optimization 

algorithms [19-21], and Model Predictive Control 

(MPC) [22, 23] which is also known as Receding 

Horizon Control (RHC). For instance, a distributed 

gradient-based optimization approach that 

considers overloading constraints and collision 

avoidance has been proposed for path planning in 

multi-agent cooperative search scenarios [24]. In 

[22], a three-layer mission planning system has 

been designed for distributed cooperative search 

and coverage. This system uses a Receding 

Horizon Predictive Control algorithm to ensure 

optimal path planning while considering collision 

avoidance and flying robots' communications. 

During CSC missions, each agent utilizes a 

probability map that is continuously updated 

through information gathered from the agent's 

sensors and shared with neighboring agents. The 

objective is to converge on regions with high 

probabilities of target existence to effectively 

reduce uncertainty in the search area. While these 

methods may enhance system performance, they 

do not guarantee optimality. 

To address this issue, this paper proposes an 

optimal strategy for multi-agent systems in 

cooperative CSC by dividing the mission into four 

sub-missions based on the environment. The 

proposed approach aims to leverage the high 

capability of multi-agent systems in cooperative 

tasks. It should be noted that although the 

presented methods and strategies for multi-agent 

missions such as search and coverage may 

improve system performance, they do not 

necessarily ensure performance optimality. 

The rest of this paper is organized as follows. In 

the next section, the definition of multi-agent CSC 

is provided. The proposed strategy is discussed in 

section 3. The numerical simulations and 

comparisons that verify the proposed approach are 

provided in section 4.  To sum up, the conclusions 

are drawn in section 5. 

Multi-agent CSC 

The search region 𝒪 ∈  ℝ2 is assumed to be a 

continuous convex polygon with the area of 𝐿 ×𝑊 

in 2D Euclidean space. In this study, it is presumed 

that the search area can be partitioned into 4 sub-

area 𝒪𝑠 ∈ 𝒪 ∈  ℝ
2 with the area of 𝑙𝑠 × 𝑤𝑠 

determined through an optimization process. As 

shown in Figure 1, the search area is uniformly 

divided into 𝑚 cells with the size of 𝛿 = Δ𝑥 × Δ𝑦 

and with this cell size, the sub-regions would be 

divided into 𝑚𝑠 cells. Δ𝑥 and Δ𝑦 denote the length 

and width of the cell, respectively. Each cell 𝑐 is 

identified with its center 𝜇𝑐 = [𝑥𝑐 , 𝑦𝑐]
𝑇, where 𝑥𝑐 

and 𝑦𝑐 are the coordinates of its center. In the 

search region, each cell is associated with a 

probability of target existence 𝑃𝑖,𝑘(𝜃𝑐) within the 

cell at moment 𝑘, modeled as a Bernoulli 

distribution. In which 𝜃𝑐 ∈ {0,1} is the target 

existence in cell 𝑐, i.e, 𝜃𝑐 = 1 and 𝜃𝑐 = 0 reveal 

the target and no target presence in cell 𝑐, 

respectively. In this work, no threats and obstacles 

are considered in the search region, and at most, 

just one target could be located in each cell. 

The kinematics model [24] for the flying robots is 

defined as 𝐬̇𝑖 = [𝑥̇𝑖 , 𝑦̇𝑖 , 𝜓̇𝑖 , 𝑣̇𝑖]
𝑇 =

[𝑣𝑖 cos𝜓𝑖 , 𝑣𝑖 sin𝜓𝑖 , 𝑢𝑖 , 0]
𝑇, with [𝑥𝑖, 𝑦𝑖]

𝑇 representing 

the planar position of the ith robot, 𝜓 as the 

heading angle, and 𝑣 as the flight velocity. The 

action variable 𝑢 corresponds to the flying robot 

turn rate command,𝜓̇. 

It is assumed that the agents are equipped with 

airborne image sensors that have the same sensing 

radius 𝑅𝑠 = ℎ tan𝜑, forming a circular field of 

view (FOV). Here, ℎ and 𝜑 indicate the flight 

altitude and half-angle of the sensor's field of view, 

respectively [24]. 

ℂ𝑖,𝑘 = {𝝃 ∈ 𝒪| ‖𝝃 − 𝝁𝑖,𝑘‖ ≤ 𝑹𝒔} (1) 

The position of the ith agent at time k is denoted 

by 𝜇𝑖,𝑘, and 𝜉 indicates an arbitrary point within 

the search region. At time k, the network topology 

is modeled as an undirected graph 𝓖𝑘 = (𝓔𝑘 , 𝓥 ), 
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where the vertices set 𝓥 includes {1,2,… ,𝑁}, and 

the edge set 𝓔𝑘 includes {{𝑖, 𝑗}: 𝑖, 𝑗 ∈ 𝒱; ‖𝝁𝑖,𝑘 −

𝝁𝑗,𝑘‖ ≤ 𝑅𝑐}, with 𝑅𝑐 denoting the communication 

range assumed to be large enough for all UAVs to 

maintain communication throughout the 

environment in this paper. 

 
Figure 1. Environment 

During the mission, each agent updates its 

probability map (𝒫𝑖,𝑐,𝑘 ≜ 𝒫𝑖,𝑘(𝜃𝑐)) using the 

Bayesian rule [8, 23]. This process incorporates 

sensor characteristics 𝑃(𝑍𝑖,𝑐,𝑘|𝜃𝑐), sensor 

observations 𝑍𝑖,𝑐,𝑘, and prior probability maps. 

 

𝒫𝑖,𝑐,𝑘

=

{
 
 

 
 

𝑝𝒫𝑖,𝑐,𝑘−1
𝑝𝒫𝑖,𝑐,𝑘−1 + 𝑞(1 − 𝒫𝑖,𝑐,𝑘−1)

                           , 𝑍𝑖,𝑐,𝑘 = 1   

(1 − 𝑝)𝒫𝑖,𝑐,𝑘−1
(1 − 𝑝)𝒫𝑖,𝑐,𝑘−1 + (1 − 𝑞)(1 − 𝒫𝑖,𝑐,𝑘−1)

     , 𝑍𝑖,𝑐,𝑘 = 0    

𝒫𝑖,𝑐,𝑘−1                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

(2) 

Sensor observations can indicate target or non-

target detection, with 𝑍𝑖,𝑐,𝑘 ∈ {0,1}, representing 

𝑍𝑖,𝑐,𝑘 = 1 for target detection and 𝑍𝑖,𝑐,𝑘 = 0 for 

non-target detection. The probability of target 

existence within cell 𝑐 at moment 𝑘 is denoted as 

𝑃𝑖,𝑐,𝑘. Additionally, 𝑃(𝑍𝑖,𝑐,𝑘 = 1|𝜃𝑐 = 1) = 𝑝 

represents detection probability, and 

𝑃(𝑍𝑖,𝑐,𝑘 = 1|𝜃𝑐 = 0) = 𝑞 represents false alarm 

probability, both of which are constant and known 

for all cells and agents. 

𝒬𝑖,𝑐,𝑘 ≜ ln(
1

𝒫𝑖,𝑐,𝑘
− 1) 

𝒬𝑖,𝑐,𝑘 = 𝒬𝑖,𝑐,𝑘−1 + 𝑣𝑖,𝑐,𝑘 

 

(3) 

where 

𝑣𝑖,𝑐,𝑘 =

{
 
 

 
 ln

𝑞

𝑝
            , 𝑍𝑖,𝑐,𝑘 = 1     

ln
1 − 𝑞

1 − 𝑝
     , 𝑍𝑖,𝑐,𝑘 = 0     

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (4) 

 

The probability map is updated using a nonlinear 

transformation and shared among agents through 

map fusion, following a consensus protocol where 

each vehicle exchanges its updated probability 

map with nearby agents 𝐻𝑖,𝑐,𝑘. 

𝐻𝑖,𝑐,𝑘 = 𝒬𝑖,𝑐,𝑘−1 + 𝑣𝑖,𝑐,𝑘 

𝒬𝑖,𝑐,𝑘 =∑𝜔𝑖,𝑗,𝑘𝐻𝑗,𝑐,𝑘

𝑁

𝑗=1

 
(5) 

where 𝜔𝑖,𝑗,𝑘 = 1 − ((𝑛𝑖,𝑘 − 1)/𝑁),  𝜔𝑖,𝑗,𝑘 = (1/

𝑁) for 𝑗 ∈ 𝒩𝑖,𝑘,  𝜔𝑖,𝑗,𝑘 = 0 for 𝑗 ∉ 𝒩𝑖,𝑘 , see [8, 

25]. 
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To find targets in a given area and decrease the 

uncertainty of the area, a path-planning approach 

is employed to control agents. The distributed 

gradient optimization technique introduced in [24] 

is utilized for this purpose. The method defines an 

equation to quantify uncertainty by using a 

probability map. A cell is deemed to have a target 

presence if 𝑃𝑖,𝑐,𝑘 gets close to 1, while a probability 

of 0 indicates no target's presence. When 

uncertainty prevails with a probability of 0.5, it is 

considered the highest. The uncertainty map of the 

ith agent at 𝑘 instant is denoted by 𝜙𝑖,𝑘, where 𝑘𝜙 

is a gain parameter. The objective function of the 

problem, which is the coverage performance, is 

defined in terms of Voronoi regions denoted by 𝑉𝑖. 
 

𝜙𝑖,𝑘(𝑐) = 𝑒
−𝑘𝜙|ln(

𝑃𝑖,𝑐,𝑘
1−𝑃𝑖,𝑐,𝑘

)|
≜ 𝑒−𝑘𝜙|𝒬𝑖,𝑐,𝑘| (6) 

𝐽(𝝁𝑘, 𝒖𝑘 , 𝝓𝑘) =∑∫ ‖𝝁𝑖,𝑘+1

 

𝑉𝑖

𝑁

𝑖=1

− 𝝃‖
2
𝜙𝑖,𝑘(𝝃)𝑑𝝃 

(7) 

 

The position and control input of the ith agent at 𝑘 

time are represented by 𝝁𝑘 and 𝒖𝑘, respectively. 

The Mass 𝐴𝑖, and centroid 𝐶𝑣𝑖 of each Voronoi 

region can be computed through the equations 

presented in [24] and [26]. The following equation 

approximates the Voronoi areas using a discrete 

method, where 𝛿 represents each cell's area. 

𝐴𝑖 ≜ ∫ 𝜙𝑖,𝑘(𝝃)
 

𝑉𝑖
𝑑𝝃,  𝐶𝑉𝑖 ≜

∫ 𝝃.𝜙𝑖,𝑘(𝝃)
 
𝑉𝑖

𝑑𝝃

𝐴𝑖
 (8) 

 

 𝐴𝑖 ≜ ∫ 𝜙𝑖,𝑘(𝝃)
 

𝑉𝑖
𝑑𝝃 = ∑ 𝜙𝑖,𝑘(𝑐)𝛿𝑉𝑖

 ,  

 𝐶𝑉𝑖 ≜
∫ 𝝃.𝜙𝑖,𝑘(𝝃)
 
𝑉𝑖

𝑑𝝃

𝐴𝑖
= (1/𝐴𝑖)∑ 𝝁𝑐𝜙𝑖,𝑘(𝑐)𝛿𝑉𝑖

 
(9) 

 

The optimal control input vector (𝒖𝑘
∗ ) can be 

obtained by solving the optimal control problem of 

minimizing 𝐽(𝝁𝑘 , 𝒖𝑘 , 𝝓𝑘). The first-order gradient 

optimization algorithm is used to minimize the 

objective function  
𝒖𝑘
∗ = argmin 𝐽(𝝁𝑘 , 𝒖𝑘 , 𝝓𝑘), as described in [16, 

24 and 27]. 

The optimal solutions updated by the equation 

𝑢𝑖,𝑘+1 = 𝑢𝑖,𝑘 − 𝛾𝑖(𝜕𝐽/𝜕𝑢𝑖)(𝒖𝑘) are obtained by 

applying the first-order gradient optimization 

algorithm to minimize the objective function 𝐽 
(for more details, see ref [16, 24 and 27]. One way 

to apply the control input, which is subject to the 

maneuverability constraint of −𝜓̇𝑚𝑎𝑥 ≤ 𝑢𝑖 ≤
𝜓̇𝑚𝑎𝑥, is by incorporating the constrained factor 

𝐶𝑢 for the control variable 𝑢̂𝑖 ∈ ℝ. 

𝑢𝑖 = 𝐶𝑢𝑢̂𝑖 = {

−𝜓̇𝑚𝑎𝑥      𝑢̂𝑖 ≤ −𝜓̇𝑚𝑎𝑥              

𝑢̂𝑖          − 𝜓̇𝑚𝑎𝑥 ≤ 𝑢̂𝑖 ≤ 𝜓̇𝑚𝑎𝑥
𝜓̇𝑚𝑎𝑥         𝑢̂𝑖 ≥ 𝜓̇𝑚𝑎𝑥                  

 (10) 

Optimal Strategy (Segregation) 

The optimization of mission segregation would be 

a practical step toward achieving successful multi-

agent system performance. To accomplish this, an 

optimal strategy based on dividing the area 

according to the overall performance of the multi-

agents must be adopted. This section proposes a 

strategy for segregating the mission into four 

submissions . 
In defining the sub-areas, the approach adopted is 

based on the segregation provided in Figure 2. The 

entire mission is split into four sub-missions, each 

assigned a specific area. The agents assigned to 

each sub-mission will start their operation from 

different sides of the environment . 
This strategy ensures that the agents will cover the 

entire assigned area more efficiently, reducing 

redundancy and avoiding the need for a crossover 

in the scale of the original area (not sub-area). Each 

set of agents within their assigned sub-area will 

autonomously complete their specific task and 

return to their original position while developing 

the performance of the common mission. Through 

this strategy, there is the chance of increasing the 

efficiency and effectiveness of the multi-agent 

system. 

In this study, we will discuss an optimization 

problem that aims to minimize the number of 

agents while maximizing the uncertainty ratio. 
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Figure 2. Region Segregation. 

The objective of this optimization problem is 

twofold (Table 1): first, to minimize the overall 

number of agents required to complete a mission; 

and second, to maximize the uncertainty ratio. The 

uncertainty ratio is defined as the ratio between the 

region covered by the agents in each sub-region 

and the total region of interest.  
Table 1. Objective Functions. 

Objective Function 

functions formula 

min . Number of Agents 𝑓1(𝐱): ∑ 𝑁𝑆𝑖
4
𝑖=1   

max . Uncertainty Ratio 𝑓2(𝐱): ∑ 𝜚𝑆𝑖
2
𝑖=1   

 

Let 𝜚𝑆𝑖 = ((1 − 𝜙̅𝑆𝑖 ,𝑘=𝑡𝑓) ∗ 𝜙̅𝑆𝑖 ,𝑘=0) 𝜙̅ 𝑘=0⁄  denote the 

uncertainty ratio of 𝑖th sub-region (𝜙̅𝑆𝑖 ,𝑘) to whole 

search region 𝜙̅ 𝑘. To achieve these objectives, 

several design variables (Error! Not a valid 

bookmark self-reference.) need to be considered. 

These include parameters for defining sub-areas, 

such as their size and shape; operational 

parameters for each agent, such as velocity and 

initial head angle; and finally, the number of 

agents required for each set. 

Table 2. Design Variables. 

Design Variables 

type Parameters Sym. X LB UB 

discrete 
Sub-area size parameter: number of cells in X-

Axis 
𝑛𝐶𝑋 𝑥(1) 40 160 

discrete 
Sub-area size parameter: number of cells in Y-

Axis 
𝑛𝐶𝑌 𝑥(2) 40 160 

discrete  Number of Agents Sub-area #1 𝑁𝑆1  𝑥(3) 3 20 

discrete  Number of Agents Sub-area #2 𝑁𝑆2  𝑥(4) 3 20 

discrete  Number of Agents Sub-area #3 𝑁𝑆3  𝑥(5) 3 20 

discrete  Number of Agents Sub-area #4 𝑁𝑆4  𝑥(6) 3 20 

continuous 

Agents initial head 

angle 

(deg) 

𝑜𝑛 𝑠𝑖𝑑𝑒 #1: [45,135]  

𝜓0 𝑥(7) 0 90 
𝑜𝑛 𝑠𝑖𝑑𝑒 #2: [135,225]  

𝑜𝑛 𝑠𝑖𝑑𝑒 #3: [225,315]  

𝑜𝑛 𝑠𝑖𝑑𝑒 #4: [−45,45]   

continuous Agents velocity (m/s) 𝑣 𝑥(8) 40 75 
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However, these design variables must satisfy 

certain constraints (Table 3) to ensure that they 

meet performance criteria while executing their 

mission. These constraints are assumed as follows: 

Table 3. Constraints. 

Constraints 

functions formula 

ℊ1(𝑥) ∑
𝜑̅𝑆𝑖,𝑘=𝑡𝑓

𝜑̅𝑆𝑖,𝑘=0

4
𝑖=1 ≤ 0.5  

ℊ2(𝑥) 
∑ 𝑁𝐷𝑇𝑆𝑖
4
𝑖=1

⌊.𝑁𝑇⌋
≥ 0.6  

in which 𝑁𝐷𝑇𝑆  indicates the number of the detected 

targets by each set of agents in their sub-regions, 

and the number of all targets in the whole area is 

denoted by 𝑁T. 

Simulations, Results, and Comparison 

The proposed scenario aims to evaluate the 

effectiveness of optimal solutions in carrying out 

cooperative search and coverage missions within a 

designated time limit. To showcase the proposed 

method for distributed cooperative search and 

coverage application, MATLAB® software was 

utilized to run simulations. The goal is to 

determine the efficiency of the optimal solutions 

and their potential to accomplish the task. 

As shown in Figure 3, the surveillance area is 

defined to have a size of 10 ×  10 𝑘𝑚2, and it has 

been divided into uniform cells of 50 × 50 𝑚2.  

Within this vast area, there are a total of 80 targets 

(green circle) that have been randomly scattered 

throughout the surveillance area and the locations 

of these targets are unknown. To generate the 

probability map, the Gaussian distribution 

function 𝒬(𝜉) = (1/𝜎√2𝜋)𝑒−(𝜉−𝜇)
2/2𝜎2 with a 

mean value 𝜇 indicating the expected location and 

a standard deviation 𝜎 has been applied. In this 

case, the Gaussian distribution function is being 

used to determine the probability of the targets 

being present within the surveillance area. 

 
Figure 3. left) probability distribution, right) location of targets. 

 

In this simulation, the probability of detection is 

set at 0.9, which means that the targets have a high 

chance of getting detected when they are present 

in the field of view. The false alarm probability is 

considered to be 0.1, which means that there is a 

relatively low possibility of getting false alarms 

from the environment.  

Furthermore, the simulation has been run for a 

specific amount of time, with the given period 

being 120 seconds. This means that any targets that 

are present in the monitored area during this time 

frame will be detected with a high degree of 

accuracy, provided that they are within the field of 

view of the sensors. The maximum turning angle 

has been set at 0.3 radians and the half-angle of 

FOV has been set at 0.4 radians, which means that 

the sensors have a relatively narrow field of view. 
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Figure 4. Proposed Strategy. 

To find multi-objective trade-off optimal solutions 

(Pareto frontier), the non-dominated sorting 

genetic algorithm (NSGA II) [28] was applied in 

the simulation. As shown in Figure 4, in each 

iteration of the optimization process, the optimizer 

returns values of the new set of design variables 

(DVs) to define the mission parameters and 

mission division. During each sub-mission, the 

agents' sensor measurements will update the local 

probability map. The probability map for each sub-

region can be updated by fusing shared 

information through the communication network 

between the sets of agents assigned to that region. 

This process allows for an uncertainty map to be 

obtained. Additionally, by utilizing shared 

information between agents in each sub-region, the 

Voronoi partition of the environment can be 

updated. As a result, each agent in every sub-

mission is directed to cover their designated sub-

region and locate targets using a path planning 

policy. 

The parameters used for NSGA II were a crossover 

fraction of 0.8 and a mutation fraction of 0.2. The 

simulation was run for 30 generations with a 

population size of 50. The optimal solutions 

obtained from the simulation include feasible 

solutions and the Pareto frontier, which are 

depicted in Figure 5.  

 
Figure 5. Optimal Solution. 

 

To evaluate the effectiveness of the optimal strategy, 

the performance of the CSC mission associated with 

one 

the selected point from the Pareto frontier is analyzed. 

The optimal design variables and objective functions 

associated with this point are presented in 

 

 
Table 4 and Error! Reference source not found., 

respectively. 
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Table 4. Optimal Solution: Objective Functions. 

Objective Function 

functions formula 

min . Number of Agents 𝑓1(𝐱): 54  

max . Uncertainty Ratio 𝑓2(𝐱): 53.89  

 

Design Variables 

type Parameters Sym. X value 

discrete 
Sub-area size parameter: number of cells in 
X-Axis 

𝑛𝐶𝑋 𝑥(1) 160 

discrete 
Sub-area size parameter: number of cells in 
Y-Axis 

𝑛𝐶𝑌 𝑥(2) 112 

discrete  Number of Agents Sub-area #1 𝑁𝑆1  𝑥(3) 16 

discrete  Number of Agents Sub-area #2 𝑁𝑆2  𝑥(4) 14 

discrete  Number of Agents Sub-area #3 𝑁𝑆3  𝑥(5) 15 

discrete  Number of Agents Sub-area #4 𝑁𝑆4  𝑥(6) 9 

continuous 
Agents initial head 
angle 
(deg) 

𝑜𝑛 𝑠𝑖𝑑𝑒 #1: [45,135]  

𝜓0 𝑥(7) 60.2014 
𝑜𝑛 𝑠𝑖𝑑𝑒 #2: [135,225]  

𝑜𝑛 𝑠𝑖𝑑𝑒 #3: [225,315]  

𝑜𝑛 𝑠𝑖𝑑𝑒 #4: [−45,45]   

continuous Agents velocity (m/s) 𝑣 𝑥(8) 72.6563 

The study presented in this article focuses on the 

performance of a system during a mission. The 

simulation results provide valuable insights into 

the effectiveness of the system in reducing 

uncertainty and finding targets. The paths of the 

agents and mean uncertainty reduction in each sub-

region are depicted in Figure 6, which clearly 

shows the success of the system. One interesting 

observation from Figure 6 is that the sub-regions 1 

to 4, corresponding to the selected optimal point, 

form rectangle regions with an area of 44.8, 11.2, 

35.2, and 8.8 𝑘𝑚2 respectively. This indicates that 

the agents covered these sub-regions and found the 

targets within them. This is a significant 

achievement as it demonstrates that the mission 

segregation strategy efficiently searches large 

areas for targets and reduces uncertainty. 
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Figure 6. Proposed Strategy: Agent's path and Mean uncertainty reduction. 
 

The simulation that covers the entire area without 

any mission segregation is an essential tool in 

assessing and verifying the performance of a 

strategy. The primary goal of this comparison is to 

ensure that the proposed strategy (implemented in 

the previous simulation) is effective in achieving 

its intended goals. This simulation provides a 

precise comparison with the previous simulation, 

as the number of agents used in both simulations is 

kept the same. Moreover, flight height and 

velocity are also kept constant to ensure that all 

parameters are considered similar to the previous 

simulation. By implementing this comparison, we 

can gain valuable insights into how well our 

proposed strategy works in practice. 

The simulation results presented in Figure 7 

demonstrate the superiority of the proposed 

approach over the existing approach in terms of 

coverage and target detection. While the existing 

approach was only able to reduce the uncertainty 

of the environment by 12.99 %, the proposed 
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approach achieved a remarkable 53.89% reduction 

in uncertainty. This significant difference in 

performance highlights the importance of adopting 

advanced techniques, such as the proposed 

approach, in multi-agent systems. 

 

 
Figure 7. Agent's path and Mean uncertainty reduction. 

Conclusion 

This paper presents an optimal strategy for 

enhancing the performance of multi-agent systems 

by implementing cooperative search and coverage 

in uncertain environments. However, operational 

constraints such as time, number of agents, and 

dimensions of the surveillance region can 

significantly impact the efficiency of a multi-agent 

system. Therefore, it is crucial to optimize the 

performance of a multi-agent team within a given 

time frame while ensuring all constraints are 

satisfied. To address this issue, we propose an 

optimal strategy for mission segregation that can 

increase the performance of multi-agent systems 

while considering how operational parameters can 

affect system performance. The proposed strategy 

involves dividing a single mission into several 

simultaneous missions based on the optimal 

division of the environment. This creates a trade-

off that ensures system performance optimality 

while achieving a common goal. The mission 

region is divided into sub-regions, and each sub-

region is assigned to specific agents to improve 

overall system performance. The effectiveness of 

the proposed strategy is demonstrated through 

simulations and relevant comparisons. The results 

show that the proposed approach outperforms 

existing methods in terms of efficiency and 

effectiveness. Future work could involve applying 

this strategy to other multi-agent tasks/missions 

and exploring its potential in real-world scenarios. 

Overall, the proposed optimal strategy for mission 

segregation provides a practical solution for 

improving the performance of multi-agent systems 

in uncertain environments with operational 

limitations. 
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