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This paper tests the fuzzy system on a previously employed fast 

terminal sliding mode controller with both the sign and the 

saturation function to track the landing trajectory of a probe on an 

asteroid and to further improve the dynamic tracking performance. 

To make fair judgments on the performance of the suggested method, 

the proportional derivative sliding mode control with both the sign 

function and the saturation function is simulated as well. The two-

point barycentric gravitational model is used to describe the weak 

gravity around the asteroid. The proposed fuzzy fast terminal method 

raises the convergence speed, improves the desired trajectory 

tracking accuracy and ensures that the system modes are placed on 

the sliding surface in a short, limited time. The absolute errors for 

the proportional derivative sliding mode controller, fast terminal 

sliding mode controller and improved fast terminal sliding mode 

controller are about 244, 139 and 113. The trajectories along all 

three coordinate axes in the proportional derivative sliding mode 

controller, fast terminal sliding mode controller and improved fast 

terminal sliding mode controller were tracked in 8 seconds, 5 

seconds and 4 seconds. The results show how the fuzzy-fast terminal 

sliding mode control with the saturation function is the better choice 

of controller and how the fuzzy system is able to adapt to the 

momentary fluctuations and cover them successfully. 

 

 

Introduction 

Asteroids soft-landing needs real time control and 

adjustment of the trajectory and speed [1]. A novel 

fuzzy- sliding mode controller is proposed by ref. 

[2] that achieves the soft-landing trajectory 

tracking in 2012, while ref. [3] has split the landing 

control into two parts: the velocity control and the 
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control over the rate of velocity decline. A strategy 

for orbital maneuver based on PLO or Piecewise 

Linear Optimization is proposed and applied on 

the asteroid soft-landing problem in ref. [4]. Ref. 

[5] has suggested an autonomous navigation 

strategy that achieves fast-tracking using the 

sliding mode variable structure control. A 

nonlinear optimal control law for moon landing is 

https://jast.ias.ir/article_163939.html
https://jast.ias.ir/article_163939.html
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proposed in ref. [6] based on a neuro-fuzzy system. 

Ref. [7] has employed a fuzzy-variable structure 

control to guide the final landing trajectory on the 

moon  . 
The nonsingular terminal sliding mode control is 

employed in ref. [8] to be applied to the asteroid 

soft-landing problem. Ref. [9] suggested a novel 

algorithm based on nonlinear guidance for a probe 

that hovers and lands on asteroids  . 
This study, aims to take the previously employed 

[10] fast terminal sliding mode control with the 

sign and the saturation function to track the 

landing trajectory of a probe on the asteroid 433-

Eros and improve the dynamic tracking 

performance by adding a fuzzy controller. As it is 

carefully investigated in various papers and 

dissertations, the fast terminal algorithm seems not 

to be employed on the asteroid landing problem 

ever before.  Ergo the team decided to check how 

the system responds to such an approach. The 

results confirmed the practicality of the method. 

Then the fuzzy control is added to enhance both 

fast terminals. In order to be able to make fair 

judgments on how the suggested methods perform, 

the proportional derivative sliding mode control 

with both the sign function and the saturation 

function is simulated as well. The two-point 

barycentric gravitational model is used to describe 

the weak gravity around the asteroid. 

Assumptions 

Table.1 shows the simulation variables and 

assumptions for the probe landing. 

Table 1. The simulation variables and assumptions of 

the probe landing on asteroid EROS433 [5] 

Variable Value Unit 

Optimal Initial 

Position 

[3200   1300   

9000] 
m 

Optimal Initial 

Speed 
[-1.2   0.2   -1] m/s 

Landing Position 
[2837   928.1   

5708] 
m 

Optimal Final 

Speed 
[0   0   0] m/s 

Average Asteroid 

Weight 
6.69×105 kg 

Probe Weight 150 kg 

Average Asteroid 

Radius 
16000 m 

Gravitational 

Constant 
6.6743×10-11 

m2kg-

1s-1 

Dynamic Equations in the Fixed-Body 

Coordinate System 

Fig. 1 shows a schematic view of asteroid 433- 

Eros. And the probe’s dynamic equations in the 

fixed-body coordinate system are as follows [1], 

 

Fig. 1. A schematic view of 433-Eros [11]. 

 

{

𝑥̈ − 2𝜔𝑦̇ − 𝜔2𝑥 = 𝑔𝑥 + 𝑢𝑥 + 𝐷𝑥
𝑦̈ + 2𝜔𝑥̇ − 𝜔2𝑦 = 𝑔𝑦 + 𝑢𝑦 + 𝐷𝑦

𝑧̈ = 𝑔𝑧 + 𝑢𝑧 + 𝐷𝑧

 (1) 

In the dynamic equation 𝑥, 𝑦, and 𝑧 show the 

probe’s position vector components in the fixed-

body coordinate system. 𝜔 = 3.3118 × 10−4 

represents the asteroid angular speed. 𝐷𝑥,  𝐷𝑦, and 

𝐷𝑧 represent the modeling uncertainties along each 

axis. The relative control acceleration vector along 

the three axes is shown by [𝑢𝑥    𝑢𝑦    𝑢𝑧]. The 

point gravitation vector with two mass centers 

along the three axes is shown by [𝑔𝑥     𝑔𝑦    𝑔𝑧] 
and can be acquired as follows [12], 
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𝑈 =

𝐺

(

 
 

𝑀1

√(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2
+

𝑀2

√(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2
)

 
 

𝑔𝑥 =
∂𝑈

∂𝑥
=

(

 
 
(

𝐺𝑀1(𝑥 − 𝑥1)

((𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2)1.5

+

𝐺𝑀2(𝑥 − 𝑥2)

((𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2)1.5 )

 
 

𝑔𝑦 =
∂𝑈

∂y
=

(

 
 
(

𝐺𝑀1(𝑦 − 𝑦1)

((𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2)1.5

+

𝐺𝑀2(𝑦 − 𝑦2)

((𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2)1.5 )

 
 

𝑔𝑧 =
∂𝑈

∂z
=

(

 
 
(

𝐺𝑀1(𝑧 − 𝑧1)

((𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2)1.5

+

𝐺𝑀2(𝑧 − 𝑧2)

((𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2)1.5 )

 
 

 (2) 

The gravitational potential function of the asteroid 

is shown by 𝑈 , while 𝐺 represents the gravitation 

constant. The two mass points of the asteroid are 

𝑀1 and 𝑀2. (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) show the 

coordinates of the two mass points (Fig. 2). 

 

Fig. 2. Mass points of the asteroid EROS433 [12] 

State-Space Equations 

State-space equations should be derived as the next 

step. 

{

𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]𝑇 =

[𝑥 𝑥̇ 𝑦 𝑦̇ 𝑧 𝑧̇]𝑇

𝑢 = [𝑢𝑥    𝑢𝑦    𝑢𝑧]𝑇
 (3) 

𝑋 shows the state-space vector and 𝑢 represents 

control input vectors. The state-space form of Eq. 

(1) is as follows: 

𝑥̇1 = 𝑥2
𝑥̇2 = 2𝜔𝑥4 + 𝜔

2𝑥1 + 𝑔𝑥 + 𝑢𝑥 + 𝐷𝑥
𝑥̇3 = 𝑥4

𝑥̇4 = −2𝜔𝑥2 +𝜔
2𝑥3 + 𝑔𝑦 + 𝑢𝑦 + 𝐷𝑦

𝑥̇5 = 𝑥6
𝑥̇6 = 𝑔𝑧 + 𝑢𝑧 + 𝐷𝑧

 (4) 

The Fast Terminal Sliding Mode Control 

Theory 

The sliding mode controller keeps the response 

insensitive to the system’s uncertainties and 

disturbances [13]. 

The sliding surface for the terminal sliding mode 

control along the x-axis is as follows: 

𝑠1 = 𝑒̇1𝑥 + 𝛽(𝑒1𝑥)
𝑝

𝑞 (5) 

In eq.5  𝑒1𝑥 = 𝑥1 − 𝑥𝑑 while 𝑥𝑑 shows the 

trajectory of the optimal landing along the x-

direction (Table 1).  𝛽 is assumed to be a positive 

parameter.  𝑝 and 𝑞 (𝑝 < 𝑞) taken to be integers. 

The nonlinear term, (𝑒1𝑥)
𝑝 𝑞⁄ , is the reason for a 

finite time convergence to the origin, which is 

equal to 𝑡𝑠 = (
𝑝

(𝛽(𝑝−𝑞))
) |𝑒1(0)|

𝑝−𝑞

𝑝  . Therefore, 

parameters 𝛽, 𝑝 and 𝑞 allow the adjustment of the 

convergence time. 

The abovementioned sliding surface comes with a 

drawback, and that is the fact that the convergence 

time strongly relies upon the initial distance of the 

states from the sliding surface. When this distance 

is greater, the convergence time increases 

proportional to |𝑒1(0)|
𝑝−𝑞

𝑝 . The fast terminal 

sliding mode control is suggested to address this 

convergence problem, as follows [13-19]: 

𝑠1 = 𝑒̇1𝑥 + 𝛼𝑒1𝑥 + 𝛽(𝑒1𝑥)
𝑝

𝑞 (6) 

In eq. 6 𝛼 represents a positive parameter. And 

adding the extra term to the sliding surface lowers 

the convergence time significantly. Should the 

states be on the sliding surface, the equation 𝑒̇1𝑥 =

−𝛼𝑒1𝑥 − 𝛽(𝑒1𝑥)
𝑝 𝑞⁄  can be established. Whereas 

when the initial state is in a great distance from the 

origin, the dynamic will roughly be 𝑒̇1𝑥 = −𝛼𝑒1𝑥. 

On the other hand, when the initial state is very 

close to the origin, the dynamic would roughly be 

𝑒̇1𝑥 = −𝛽(𝑒1𝑥)
𝑝 𝑞⁄ . By using the parameters 𝛼 and 

𝛽, one can adjust the convergence time for both far 

and near distances, independently. The equation 

below obtains the convergence time [14]. 
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𝑡𝑠 =
𝑝

𝛼(𝑝 − 𝑞)
(ln (𝛼𝑒1

(𝑝−𝑞)

𝑝 + 𝛽) − ln𝛽) (7) 

Control Input Design and Stability Analysis 

Optimal Trajectory Design 

The vertical speed should be low enough to keep 

the probe from being damaged in the safe landing 

maneuver [1]. Here, a third-degree polynomial, is 

assumed for the landing trajectory, as described in 

Eq. (8). 

𝑥𝑑(𝑡) = 𝑥0 + 𝑥1𝑡 + 𝑥2𝑡
2 + 𝑥3𝑡

3 (8) 

In order to obtain 𝑥0, 𝑥1, 𝑥2, and 𝑥3, according to 

Table 1, the following equations are considered. 

𝑥𝑑(0) = 3200 ⇒ 𝑥0 = 3200

𝑥̇𝑑(0) = −1.2 ⇒ 𝑥1 = −1.2

𝑥𝑑(8000) = 2837

𝑥̇𝑑(8000) = 0 }
 

 

⇒ {
𝑥2 = 2.83 × 10

−4

𝑥3 = −1.73 × 10
−8 

(9) 

By considering the final time of 𝑡 = 8000 sec, 𝑦 

and 𝑧– axis landing trajectory variables are 

calculated. 

{

𝑦𝑑(𝑡) = 1300 + 0.2𝑡 −

6.74 × 10−5𝑡2 + 4.58 × 10−9𝑡3

𝑧𝑑(𝑡) = 9000 − 𝑡

+9.57 × 10−5𝑡2 − 2.76 × 10−9𝑡3

 (10) 

The procedure being similar for all three 

directions, is why the approach is only explained 

for the state variable 𝑥. The other directions are 

calculated in the same way. 

Control Input Design 

Taking the simulation parameters values, the 

position state vectors, as well as the optimal 

velocities that are listed in Table 1 into 

consideration, the derivation of Eq. (6) leads to the 

following equation. 

𝑆̇1(𝑥) = 𝑒̈1𝑥 + 𝑒̇1𝑥 (𝛼 + 𝛽
𝑝

𝑞
(𝑒1𝑥)

𝑝

𝑞
−1
) (11) 

Knowing the equation of the sliding surface is 

defined based on the state variables and optimal 

position, it is expected that the system converges 

to its optimal position. Hence, the following 

equation is assumed for the sliding surface. 

{
𝑠1 = 0
𝑠̇1 = 0

 (12) 

With respect to the theory of the sliding mode, the 

control input 𝑢𝑥 is interpreted as [20,21] 

𝑢𝑥 = 𝑢𝑥𝑒𝑞 + 𝑢𝑥𝑠 (13) 

Here, the parameter 𝑢𝑥𝑒𝑞 is the component that 

holds the states on the defined sliding surface, 

while 𝑢𝑥𝑠 is the switching component that drives 

those states closer to the sliding surface., 𝑢𝑥𝑠 , as a 

matter of fact, is the stabilizer of the system, which 

is determined by assuming the Lyapunov stability.  

 
The Lyapunov stability 

The parameter 𝑢𝑥𝑒𝑞 is obtained by setting 𝑠̇1 =

0. 

𝑠̇1(𝑥) = 𝑒̈1𝑥 + 𝑒̇1𝑥 (𝛼 + 𝛽
𝑝

𝑞
(𝑒1𝑥)

𝑝

𝑞
−1
) = 0

⇒ (𝑥̇2 − 𝑥̇2𝑑)

+ (𝑥2 − 𝑥2𝑑) (𝛼

+ 𝛽
𝑝

𝑞
(𝑒1𝑥)

𝑝

𝑞
−1
) = 0

⇒ 𝑢𝑥𝑒𝑞
= −(2𝜔𝑥4 + 𝜔

2𝑥1 + 𝑔𝑥
+ 𝐷𝑥 − 𝑥̇2𝑑)

− (𝑥2 − 𝑥2𝑑) (𝛼

+ 𝛽
𝑝

𝑞
(𝑒1𝑥)

𝑝

𝑞
−1
) 

(14) 

Assuming the Lyapunov function as a definite 

positive function: 

𝑉1 =
1

2
𝑠1
2 > 0 (15) 

The derivation of Eq. (15) must be a definite 

negative to assure the asymptotic stability. 
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𝑉̇1 = 𝑠1𝑠̇1 = 𝑠1 (𝑒̈1

+ 𝑒̇1 (𝛼

+ 𝛽
𝑝

𝑞
(𝑒1)

𝑝

𝑞
−1
))

= 𝑠1 ((𝑥̇2 − 𝑥̇2)

+ (𝑥2 − 𝑥2) (𝛼

+ 𝛽
𝑝

𝑞
(𝑒1)

𝑝

𝑞
−1
))

= 𝑠1 (2𝜔𝑥4 + 𝜔
2𝑥1

+ 𝑔𝑥 + (𝑢𝑥𝑒𝑞 + 𝑢𝑥𝑠)

+ 𝐷𝑥 − 𝑥̇2𝑑

+ (𝑥2 − 𝑥2𝑑) (𝛼

+ 𝛽
𝑝

𝑞
(𝑒1𝑥)

𝑝

𝑞
−1
)) < 0 

(16) 

By substituting Eq. (14) in Eq. (16): 

𝑉̇1 = 𝑠1(𝑢𝑥𝑠) < 0 (17) 

So, a proper candidate for the switching control 

components that satisfies Eq. (17) would be: 

𝑢𝑥𝑠 = −𝑘1sgn (𝑠1) (18) 

Here,  𝑘1 is assumed to be a real positive 

parameter. By combining the Eqs. (14) and (18), 

then by substituting the result in Eq. (13), the 

proposed general equation for tracking the 

reference trajectory of the probe's is given by Eq. 

(19). 

𝑢𝑥 = −(2𝜔𝑥4 +𝜔
2𝑥1 + 𝑔𝑥 +𝐷𝑥

− 𝑥̇2𝑑)

− (𝑥2 − 𝑥2𝑑) (𝛼

+ 𝛽
𝑝

𝑞
(𝑒1𝑥)

𝑝

𝑞
−1
)

− 𝑘1sgn (𝑠1) 

(19) 

The Fuzzy Control system  

We now present a fuzzy method based on [22] 

which adapts to our system successfully. Sliding 

mode controllers, as explained before, consist of 

two parts: one part is the equivalent control (𝑢𝑥𝑒𝑞) 

while the second part is the switching control 

(𝑢𝑥𝑠). Based on the tasks mentioned for them, (the 

switching control directs the variables towards the 

sliding surface, and the equivalent control keeps 

them on the sliding surface) it can be said that 

when the system modes are placed at great a 

distance from the sliding surface, the switching 

control’s role is more important. On the other 

hand, when the system modes are closer to the 

sliding surface, the equivalent control’s effect is 

greater. So, the fuzzy coefficients can be put as 

follows: 

𝑢𝑥 = 𝑎𝑢𝑥𝑒𝑞 + 𝑏𝑢𝑥𝑠 (20) 

The coefficients a and b change between 0 and 1. 

Should the system modes be far from the sliding 

surface, a = 0 and b = 1 are assumed, and should 

they be on the sliding surface, a = 1 and b = 0 are 

considered. The coefficients vary between zero 

and one in other conditions. The distance length 

between the states and the sliding surface is put as 

follows. 

𝐷𝑖 =
𝑐1𝑖𝑥1 + 𝑐2𝑖𝑥2 +⋯+ 𝑐𝑛𝑖𝑥𝑛

√𝑐𝑖
2 + 𝑐2𝑖

2 +⋯+ 𝑐𝑛𝑖
2

 
(21) 

The number of system inputs is shown by m: 

D = √∑𝐷𝑖
2

𝑚

𝑖=1

 (22) 

Based on where D is placed, the coefficients are 

assigned to the parameters a and b. They may also 

be assumed as continuous values as follows [22]: 

{
𝑎(𝐷) =  𝑒−𝑁𝐷

𝑏(𝐷) = 1 − 𝑒−𝑀𝐷 
 (22) 

Where parameters M and N are assumed to be 

arbitrary coefficients which determine the ascent 

and descent rate of the coefficients a and b. 

In this paper two fuzzy fast terminal sliding mode 

controllers are employed and evaluated. At first, in 

the switching input, the sign function is adopted, 

then, the it is replaced by a saturation function. 

MATLAB Simulations 

Fast Terminal Sliding Mode Control with a 

Sign Function 

By considering the simulation time to be 15 

seconds, the sampling time to be 0.01 of a second, 
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and by referring to Table 1, the control inputs were 

implemented for all three directions, and the 

following figures were derived. 

 
Fig. 3. The tracking performance of the desired probe 

trajectory with a classic PD sliding mode, fast terminal 

mode and improved fast terminal with a sign function 

Fig. 3 shows how the improved fast terminal is 

able to track the optimal trajectory in a shorter 

period than both the classic proportional derivative 

sliding mode control and the fast terminal control. 

 
Fig. 4. The probe optimal velocity tracking with a 

classic PD sliding mode, fast terminal mode and 

improved fast terminal mode with a sign function 

Fig. 4 shows how the improved fast terminal 

sliding mode controller is able to track the optimal 

probe speed faster than the classic proportional 

derivative sliding mode controller and the fast 

terminal sliding mode controller. 

 
Fig. 5. The control attempt with a classic PD sliding 

mode, fast terminal mode and improved fast terminal 

mode with a sign function 

A notably large amount of chattering or parasitic 

oscillation is illustrated in Fig. 5. The chattering 

happens in the control inputs in both the 

proportional derivative sliding mode and the fast 

terminal one. Nevertheless, the fluctuations are 

efficiently eliminated by the fuzzy system, 

indicating that the fuzzy control adapts to the 

momentary changes well enough.  

 
Fig. 6. Sliding surface to control with a classic PD 

sliding mode, fast terminal mode and improved fast 

terminal mode with a sign function 

In Fig. 6 it is shown how the Improved fast 

terminal sliding mode controller is able to 
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converge to the sliding surface much faster than 

the proportional derivative sliding mode controller 

and the fast terminal sliding mode one. 

 
Fig. 7. The adaptive coefficients of the improved fast 

terminal sliding mode control system. 

Fig. 7 illustrates the fuzzy adaptive coefficients 

responsible for the elimination of the chattering 

phenomenon and the behavior improvement of the 

control inputs as well as the system response speed 

increase. In the beginning, where it is required to 

direct the state variables towards the sliding 

surface, the coefficient b = 1 is assumed, and when 

the state variables are placed on the sliding surface, 

the coefficient a is activated to lower the effect of 

the coefficient b, so that the state variables are 

maintained on the sliding surface, based on Eq. 

(20). 

 The assessment of Figs. 4-6, revealed that the 

trajectories along all three coordinate axes in the 

proportional derivative sliding mode controller, 

fast terminal sliding mode controller and improved 

fast terminal sliding mode controller were tracked 

in 8 seconds, 5 seconds and less than 4 seconds.  

Fast Terminal Sliding Mode Control with a 

Hyperbolic Tangent Function 

By considering the simulation time to be 15 

seconds, the sampling time to be 0.01 of a second, 

and by referring to Table 1, the control inputs were 

implemented for all three directions, and the 

following figures were derived. 

 
Fig. 8. Tracking the desired trajectory of the probe 

with classic PD sliding mode, fast terminal mode and 

improved fast terminal mode with a hyperbolic tangent 

function 

Fig. 8, shows that tracking the desired path by the 

fast terminal sliding mode control improved with 

the fuzzy system is done faster than the other two 

controllers. Also, in Fig. 9, it is well illustrated that 

tracking the optimal speed of the spacecraft by fast 

terminal sliding mode control improved with the 

fuzzy system is done in a shorter time than 

PDSMC and FTSMC. Fig. 10, shows that due to 

the use of the hyperbolic tangent saturation 

function, chattering is efficiently eliminated, while 

the performance of tracking the optimal trajectory 

of the probe by the improved FTSMC is enhanced, 

as the tracking is performed more rapidly than 

PDSMC and FTSMC.  
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Fig. 9. Tracking the optimal trajectory of the probe 

with classic PD sliding mode, fast terminal mode and 

improved fast terminal mode with a hyperbolic tangent 

function 

 
 

Fig. 10. The control attempt with PDCMC, FTSMC 

and improved FTSMC modes with a hyperbolic 

tangent function 

 

 
Fig. 11. Location tracking error for three moving axes 

PDCMC, FTSMC and improved FTSMC modes with 

a hyperbolic tangent function 

Figs. 8-10 show that the trajectory tracking was 

achieved more smoothly due to the inherent 

characteristics of saturation functions such as 

hyperbolic tangent. Hence, the oscillations of 

states and input control were eliminated in Fig. 10. 

As illustrated in Fig. 10, the position tracking error 

tended to become zero, while the tracking had an 

efficient accuracy, with improved FTSMC being 

more accurate than FTSMC and the classic PD 

sliding mode. 

Table 2 reports the total error for the controllers. 

Table 2. The absolute error for improved 

FTSMC,FTSMC and PD sliding mode controller. 

Obviously the absolute error value for the 

Improved Fast Terminal Sliding Mode Controller 

was significantly lower than the other two.  

Fig. 12 illustrates a 3D landing trajectory of the 
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8000 s), based on the optimal trajectory tracking. 

The tracking was done fast and accurate. And the 

Improved Fast Terminal Sliding Mode Controller 

outperformed the other two. 

 
 

 
Fig. 12. Location tracking error for three moving axes 

with improved FTSMC, FTSMC and PDCMC modes 

with a hyperbolic tangent function 

The results show how the chattering affects the 

states' derivatives. Regarding the Fourier 

transformation as follows [20,21], 

𝑑

𝑑𝑡
𝑥(𝑡)

𝐹
↔ 𝑗𝜔𝑋(𝑗𝜔) (23) 

Eq. (23) shows that the linear amplification of 

system frequencies results in time derivation, 

which means that higher frequencies are amplified 

and lower frequencies do not experience much 

change.  

Conclusions 

This paper employed the fuzzy fast terminal 

sliding mode control with the sign and the 

saturation function with the purpose of landing a 

probe on the asteroid 433-Eros. Sliding mode 

controllers are one of the most common controllers 

for nonlinear systems, because of their relative 

simplicity and their high resistance to uncertainties 

and perturbations. However, they experience a lot 

of chattering especially in rapid dynamics systems. 

The sign function is replaced by a saturation 

function to make the behavior smoother while 

reducing the oscillations. The proposed fuzzy fast 

terminal method raised the convergence speed, 

improved the desired trajectory tracking accuracy 

and ensured that the system modes are placed on 

the sliding surface in a short, limited time. The 

absolute errors for the proportional derivative 

sliding mode controller, fast terminal sliding mode 

controller and improved fast terminal sliding mode 

controller were about 244, 139 and 113. Minimum 

error belonged to the improve fast terminal sliding 

mode controller. The trajectories along all three 

coordinate axes in the proportional derivative 

sliding mode controller, fast terminal sliding mode 

controller and improved fast terminal sliding mode 

controller were tracked in 8 seconds, 5 seconds and 

4 seconds. The results show how the fuzzy-fast 

terminal sliding mode control with the saturation 

function is the better choice of controller. Finally, 

it is worthy of mention that the improved fast-

terminal sliding mode control method is a new and 

efficient method in the space industry and can be 

implemented on similar systems. 
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