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 This paper provides academic insight into designing a three-

dimensional guidance law that can be utilized to reach maneuvering 

targets at definite angles. Firstly, the theoretical phenomenon of a 

conventional dynamic inversion will be addressed, which can be 

implemented for reaching targets with constant velocity. However, 

given that this method does not apply to reaching accelerated targets, 

a combination of the dynamic inversion method and sliding mode 

control is presented. These mechanisms can impact maneuvering 

targets with bounded acceleration. Proceeding with the discussion of 

these observations, an improved form of the proposed controller will 

be introduced as this method guarantees a finite reaching time. 

Furthermore, the chattering phenomenon will be analyzed, which is 

the chief disadvantage of the sliding mode. Given these findings, a 

second terminal sliding surface will be presented. This approach will 

generate continuous guidance law while effectively eliminating the 

chattering problem in the sliding mode mechanism. Finally, the 

effectiveness of the proposed guidance laws against maneuvering 

targets will be demonstrated through the application of numerical 

simulations. 

 

Introduction 

The rapid development of aerospace science and 

interceptor guidance has brought much attention to 

the design of guidance laws against maneuvering 

targets. For an array of rationales attacking 

maneuvering targets proves to be very fundamental. 

For instance, attacking maneuvering targets is 

highly pertinent in the military industry. This 

phenomenon also proves to be fundamental to 

designing a terminal impact angles guidance law, 

which enables further destruction of the target. In 

recent years, much research has been conducted on 
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this subject. An improved form of Proportional 

navigation guidance law (PNGL) was proposed in 

[1]. Also, a new optimal guidance law was 

introduced using a teaching-learning–based 

optimization (TLBO) algorithm. Based on the 

establishments presented in [2], an optimal guidance 

law was inaugurated, which was utilized to attack 

maneuvering targets based on the Riccati equation. 

That study provided an analytical solution for this 

equation considering the impact angle constraints. 

Reference [3] presented an optimal guidance law for 

maneuvering targets. First, the kinematic dynamic is 

https://jast.ias.ir/article_155433.html
https://jast.ias.ir/article_155433.html
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linearized, and the optimal control law is introduced 

for the linear model. Reference [4] considered the 

impact angle constraint and introduced a new 

adaptive guidance law, which can effectively reach 

maneuvering targets in a finite time. The main 

feature of this study is the design of a new simple 

adaptive nonlinear guidance law and smooth 

acceleration commands. 

The dynamic inversion (DI) method is one of the 

nonlinear control methods used widely for guidance 

law design [5]. Several studies have been carried out 

in this field. For example, an adaptive guidance law 

is presented based on a combination of DI and a 

disturbance observer [6]. Reference [7] utilized the 

dynamic inversion method and PI controller to 

design the guidance law for attacking maneuvering 

targets. Moreover, reference [8] attempted to replace 

the system's dynamics with desired dynamics with 

the dynamic inversion method. Then, fuzzy logic 

was adopted to better tune the system's parameters. 

Sliding mode control (SMC) is a well-known 

control method that ensures satisfactory 

performance for a wide range of dynamic systems 

(especially nonlinear systems) in the presence of 

bounded disturbances and uncertainties. The main 

drawback of the sliding mode control is the 

chattering phenomenon (high-frequency 

oscillations) produced due to the discontinuous part 

of the SMC law. The chattering problem can be very 

destructive for the controlled system. Much research 

has been undertaken on applying sliding mode 

control in the design of guidance law. For example, 

a finite-time guidance law was introduced based on 

terminal sliding mode control (TSMC) in the 

presence of disturbances in reference [9]. This study 

solved the singularity problem of terminal sliding 

mode control by proper control law design. 

Furthermore, In reference [10], an adaptive law was 

designed to estimate the target acceleration as an 

unknown disturbance. A guidance law was proposed 

based on the fast terminal sliding mode control. 

Also, reference [11] introduced a guidance law 

based on a novel time-varying sliding mode control. 

Thus, ensuring that the interceptor can reach the 

target at the desired impact angle. 

Finite-time convergence is one of the influential 

indexes for guidance problems. Most of the 

proposed guidance methods achieve asymptotical 

tracking. This means that it requires infinite time for 

convergence. However, in recent years some 

research has been undertaken to examine the finite-

time guidance law. For example, two novel 

nonsingular TSMC-based guidance laws were 

presented for a rigid spacecraft [12]. This study 

guaranteed finite-time convergence by adequately 

designing the sliding surfaces. The proposition of a 

fast nonsingular TSMC based on a neural network 

observer for the formation control of the space crafts 

was examined in reference [13]. This controller 

avoids the singularity problem and ensures a faster 

finite-time convergence compared to congenial 

TSMC. Reference [14] presented a finite-time 

sliding mode guidance law with impacting angle 

constraints. Moreover, a linear extended state 

observer was adopted to estimate the accelerations 

of the maneuvering target. A second-order terminal 

sliding mode guidance law was proposed for 

intercepting maneuvering targets with unknown 

acceleration bounds in reference [15]. In addition to 

finite-time convergence, this method also eliminates 

the undesirable chattering phenomenon without any 

performance sacrifice. Further, reference [16] 

designed a new form of finite-time guidance law. 

This paper also investigates replacing the 

discontinuing part of the sliding mode with a 

continuous component, which intent effectively 

eliminates the chattering dilemma. However, all of 

the above-introduced guidance laws were designed 

for two-dimensional dynamics. Three-dimensional 

guidance laws are much more applicable in 

comparison with two-dimensional guidance laws. 

Most studies focus on dividing a Three-dimensional 

guidance law into two separate two-dimensional 

engagements [17]. However, this approach will 

affect the guidance accuracy. There has also been 

some research conducted on three-dimensional 

guidance laws. A feedback linearization control 

approach was employed in reference [18] for 

designing guidance laws. Then a combined optimal 

robust control method was introduced to attack 

maneuvering targets. A novel guidance law was 

introduced based on a finite time sliding mode 

control in reference [19]. An adaptive twisting-

based three-dimensional guidance law was 

presented in reference [20] for nullifying the LOS 

angle tracking errors. Lastly, reference [21] 

proposed two composite three-dimensional 

guidance laws based on backstepping control and 

nonlinear disturbance observers. However, most of 

the research which has been done on three-

dimensional guidance laws failed to consider finite-

time convergence and terminal impact angle 

constraints. 

The mentioned studies all agreed on the 

predominant problems in the sliding mode control 

mechanism. These problems are the chattering 
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phenomenon and finite-time convergence. Thus, 

this paper proposes a dynamic finite-time dynamic 

inversion-based sliding mode control-based 

(DFDISMC) guidance law. In this paper, three 

theorems will be presented. In the first theorem, the 

dynamic inversion method is applied to design 

guidance laws, then the combination of this method 

and the sliding mode control method is presented. 

The second theorem provides a finite-time DI-based 

sliding mode guidance law. The third theorem 

presented in this paper introduces a dynamic finite-

time DI sliding mode control-based guidance law by 

combining a finite-time DI sliding mode control and 

a second terminal sliding surface. In this instance, a 

first-order dynamic is obtained for the control input. 

Therefore, by integrating the derivative of the 

control signal, a smooth control signal is obtained, 

and the chattering phenomenon is avoided. The 

DFDISMC guidance law's main advantages are the 

dynamic inversion simplicity and the robustness of 

the sliding mode control. Also, the DFDISMC 

guidance law addresses the two underlying 

problems: infinite time convergence and the 

chattering phenomenon complication.  

The main novelties of this paper are summarized as 

follows: 

1- Designing a new guidance law based on the 

combination of dynamic inversion and sliding 

mode control.  

2- Introducing conditions for the proposed method 

that ensures finite-time convergence.  

3- Eliminating the chattering effect by introducing a 

second terminal sliding manifold and proposing 

a dynamic guidance law.  

4- The remaining contents of this paper are 

presented as follows. The problem statement is 

presented in section 2. Section 3 proposes a 

finite-time DI sliding mode three-dimensional 

guidance law. Furthermore, a dynamic DI sliding 

mode control is designed to handle the chattering 

problem. Finally, comparative simulations are 

presented in Section 4.  

Problem Statement 

In this paper, a three-dimensional interception-target 

geometry is considered, as shown in Figure 1, where 

T shows the target and M shows the interceptor.  

 
Figure 1. Interceptor-target geometry 

In the graphical demonstration presented above, the 

I I IX Y Z  frame is the reference frame and the

M M MX Y Z  and T T TX Y Z  are the velocity frames 

belonging to the missile and Target, respectively. 

Furthermore, R is the interceptor and the target 

relative distance. The symbols  tV  and mV  represent 

the target and the interceptor velocities. 

Furthermore, yma  , zma  , yta , and zta  are the  yaw 

and pitch directions for  lateral acceleration, which 

belong to the interceptor and the  target respectively. 

In this model, the interceptor has a constant velocity 

( mV ) which its direction is defined by angles
m  and  

m . Also, the target has a constant velocity  tV which 

is defined by the angles 
t  and  

t respectively. 

Moreover, 
L  and  

L show the Line of sight (LOS) 

angles. The three-dimensional dynamics of Figure 1 

is shown as follows [22]: 

( cos cos cos cos )t t m m mR V    = −              (1) 

( sin sin )L t m mR V   = −            (2) 

cos ( cos sin cos sin )L L t t m m mR V      = −        (3) 

sin sin coszm
m L L m L m

m

a

V
     = − −            (4) 

sin cos tan sin tan cos
cos

ym

m L L m m L m m L L

m m

a

V
         


= − − −      (5) 

sin sin coszt

t L L t L t

m

a

V
     


= − −                      (6) 

sin cos tan sin tan cos
cos

yt

t L L t t L t t L L

m t

a

V
         

 
= + − −   (7) 

note that t

m

V

V
 = . 

Control objective:  

The main objective of this article is to design 

guidance laws (
zma  and

yma ) such that 
L  and 

L  

converge to the desired values and  
L  and 

L

converge to zero. 
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In this study, R , R , 
L , 

L , 
L , 

L , 
m , and 

m  

are assumed to be measurable. Besides, 
Lf and 

Lf

are desired angles, and finally  
1e and 

2e  are LOS 

angle errors and are defined as 
1 L Lfe  = − and 

2 L Lfe  = − . 

Assumption 1[23]: In the guidance progress, when 

0R R= , the interception has reached the target. 

Therefore,
0R is a very small constant.  

Assumption 2: The relative degree between the 

control inputs and the LOS angles is two and can be 

written by the following equations. 

2cos cos 2
cos sin 2t m L

L zt zm L L L

R
a a

R R R

  
   = − − −  

𝜙̈𝐿 =
cos 𝜙𝑡

𝑅𝑐𝑜𝑠𝜃𝐿
𝑎𝑦𝑡 −

𝑠𝑖𝑛𝜃𝑡𝑠𝑖𝑛𝜙𝑡

𝑅 𝑐𝑜𝑠𝜃𝐿
 𝑎𝑧𝑡

+ 
𝑠𝑖𝑛𝜃𝑚𝑠𝑖𝑛𝜙𝑚

𝑅𝑐𝑜𝑠𝜃𝐿
 𝑎𝑧𝑚

− 
𝑐𝑜𝑠𝜙𝑚

𝑅 𝑐𝑜𝑠𝜃𝐿
𝑎𝑦𝑚 + 2𝜙̇𝐿𝜃̇𝐿𝑡𝑎𝑛𝜃𝐿

−
2𝑅̇ 𝜙̇𝐿

𝑅
 

or in vector form: 

= + + 1ψ F BU B D                              (10) 

where: 

L

L





 
=  
 

ψ ,

2 2
cos sin

2
2 tan

L
L L L

L
L L L

R

R

R

R


  


  

 
− − 
 =
 

− 
 

F , 

cos
0

sin sin cos

cos cos

m

m m m

L L

R

R R



  

 

 
− 

 =
− 

 
 

B , 
zm

ym

a

a

 
=  
 

U , = −1B B  

  

zt

yt

a

a

 
=  
 

D  

The important note is that due to the multiplication 

of B in U, the LOS can be controlled if 0R  and 

, 2m m    .  

Assumption 3: Target accelerations are assumed to 

be bounded  

1yta a      and 
2zta a  

or  

1

1B D D  

In this paper, the inequalities relations for column 

vectors are defined as follows: If  A B ,  the A 

dimension  is equal to the dimension of B and also 

all the arrays of A  are smaller than the same arrays 

of B. Similarly, other relations like (  =  and …) are 

defined. 

Also, it is assumed that derivative of the target 

accelerations are also bounded  

3yta a      and 

4zta a  

or 

1 2( )  B D D
 

Guidance Law Design 

First, this section presents a guidance law based on 

the dynamic inversion method, neglecting the target 

accelerations. The following components present 

the combination of the DI method with the sliding 

mode method. Following this, improved forms of 

this combination are analyzed for designing 

guidance laws utilizing the three theorems. 

Dynamic Inversion Method 

Dynamic Inversion is a simple method for 

controlling dynamic systems [5]. The advantage of 

this method is its simplicity. However, the 

disadvantage of this method is its inability to cope 

with uncertainties and disturbances. In the following 

equation, the second-order error dynamic is 

considered: 

0+ + =v pE K E K E                    (11) 

where, 
 

T

L Lf L Lf   = − −E
, 

2 22 n I =vK and 
2

2 2n I =pK
. 

The values of  and 
n  can be determined by 

considering the arbitrary places of poles. It should 

be noted that the place of the poles should be chosen 

according to the stability and convergence rate. 

Remark 1:Due to the inability of this method in 

disturbance rejection in dynamics (10), disturbances 

are neglected, [0 0]=1B D . 

Therefore, to achieve equation (11) we adopt the 

following guidance laws. 

1

1 ( )Lf

v p

Lf

K K




−
 

= − + + + 
 

U B F E E                (12) 

Dynamic Inversion-Based Sliding Mode Control 

(DISMC) 

Despite the effectiveness and simplicity of the 

dynamic inversion approach, this method cannot 

eliminate the effects of disturbances. In this case, the 
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following combinations of the dynamic inversion 

method with sliding mode control are introduced. 

Theorem 1. The following sliding surface is 

proposed to cope with disturbances. This sliding 

mode method can easily combine with the dynamic 

inversion method and allow it to reject disturbances. 

The following sliding surface is considered. 

0
0[ ( ) ( ) ( ) ]

t

t
t t d = − − = noms Γ ψ ψ ψ 0                 (13) 

Where 
1 2( , )Diag=  Γ and 

1  , 
2 are arbitrary 

positive gains to be tuned,
1

1 2

2

0
( , )

0
Diag

 
  =  

 
 

and 0 is a column vectors consist of zero arrays. 

nomψ is system dynamics (10) neglecting 

disturbances with nominal guidance law (12). The 

important feature of the proposed sliding manifold 

is the existence of 
0ψ(t )which can eliminate the 

reaching phase. Therefore, the switching phase can 

start from the initial time. 

The derivative of  the sliding surface (13) with 

respect to time, we have: 

[ ]= − =noms Γ ψ ψ 0                                              (14) 

substituting dynamic (10): 

[ ( ) ] 0= + + + − − =1 2 1 1s Γ F B U U B D F BU                        

(15) 

where 
1U   is the introduced input (12) And the input 

2U  is proposed as:  

(sgn( ))Diag  −s s η                                  (16) 

Where, sgn(.) is the sign function which is defined as   

𝑠𝑔𝑛(𝑐) = {
1 𝑐 > 0
0 𝑐 = 0

−1 𝑐 < 0
} , and for vectors,  

𝑠𝑔𝑛(𝑐) = [
𝑠𝑔𝑛(𝑠𝑖)

⋮
𝑠𝑔𝑛(𝑠𝑛)

] The diagonal matrix of a 

vector is defined as 

1

2

1 2

0 0 0

0 0 0
( ) ( , , , )

0 0 0

0 0 0

n

n

a

a
Diag Diag a a a

a

 
 
 = =
 
 
 

A   

and η is a vector with positive entries. 

 

Considering the sliding mode condition (16), the 

input is computed as 

 1( ) sgn( )−= −2U ΓB K s             (17) 

where 
1 2( , )Diag k k=K  is a matrix and and 

2*1 1

= +KI D η  

To investigate the stability, the following Lyapunov 

function is chosen: 

1
( )

2
Diag=V s s                              (18) 

The Lyapunov function (18) is a positive definite 

function. The derivative of the Lyapunov function 

(18) is computed as follows: 

( )V Diag= s s                    (19) 

Considering the derivative of sliding surface (15), 

using equation (16) and the inequality (17): 

V  −η s                                            (20) 

Where, c  is the absolute value function of c 

(constant) and is defined for vector s  as 1

2

s

s

 
=  
 

s . 

Consequently, the Lyapunov stability is proved. 

Remark 2: As was previously mentioned, the two 

fundamental problems with sliding mode control are 

the chattering phenomenon and infinite time 

convergence. From the above analysis, it is patent 

that the sliding mode control method proposed in 

theorem 1 suffers from both problems. 

Finite-time Dynamic Inversion-Based Sliding 

Mode Control (FDISMC) 

In this part, conditions are introduced for dynamic 

inversion (nominal input) and the sliding mode 

control that guarantees the finite-time convergence 

of the controller. 

Finite-time control is an important topic in the 

control of dynamic systems. The system’s 

trajectories converge to an equilibrium point in 

finite time by designing a finite-time controller.  

Lemma 1 [24]: consider the following linear system 
x u=                                      (21) 

By applying the following control input, the close 

loop system converges to the origin in finite time. 

2( ) ( )u x sign x x sign x



  −= − −                   (22) 

with parameters 0   and  )0,1  . 

Lemma 2 [25]: Assume that a Lyapunov function  

( )V t  meets the following condition: 

1 2/

1 2 0( ) ( ) ( )V t V t V t for t t
   +                  (23) 

Where, 1  and 2  are positive constants. Also, 1  

and 2 are positive odd numbers where, 1 2  . 

Then, for initial time 0t , the Lyapunov function 

decreases to zero in finite-time: 
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1 21 /

1 2 0

0

2 1 2 1

( )1
ln

/
s

v t
t t

  

   

−+
 +

+
            (24) 

Theorem 2. Considering dynamic (10), the sliding 

surface (13) and the Lyapunov function (18), the 

following nominal control input is introduced. 

1
2( ( ) ( ))Lf

Lf

sign sign




 



−
−

 
= − + + + 

 
1U B F E E E E   (25) 

Where, the power of vectors is defined as 

1 n
v v

  =
 

V . After applying control input 

(25) to equation (10), the following error dynamic is 

achieved. 

2( ) ( ) 0sign sign

  −+ + =E E E E E           (26) 

According to lemma 1, the control objective of the 

certain system is met in finite time. 

Considering the sliding manifold (13), the following 

control law  is proposed. 

1 2 1 2 2/ )/1 (2

1 2

1
( ) sgn( ) 2

2

     − −−  
= − + + 

 
2U ΓB K s s s (27) 

By adopting Lyapunov function (18), considering 

equation (15), and applying proposed control input 

(27) Where 1 2/

2*1 1 1 2

1 1
( )
2 2

  = + + +KI D η s s , the 

following inequality is achieved according to lemma 

2. 

1 2

1 2

/2 2

1 2

/

1 2

1 1
( )
2 2

( )

 

 

  

 

 − + +

 +

V s s s

V(t) V(t)

                       (28) 

The system's errors converge to zero in a finite time. 

Furthermore, the effects of the bounded 

disturbances and uncertainties are rejected. Thus 

according to proposed control laws, the error states 

converge to the sliding manifold in a finite time and 

then converge to the origin by applying the control 

input (25) in a finite time. 

Dynamic Finite-time Dynamic Inversion-Based 

Sliding Mode Control (DFDISMC) 

Section 3-3 addressed the finite-time tracking 

problem of the proposed sliding mode control. In 

this subsection, the chattering problem of sliding 

mode needs to be solved. 

Therefore, in this section of the paper, a second 

sliding surface is introduced to achieve the first-

order control dynamic to eliminate the chattering 

problem evident in the sliding mode mechanism. 

Also, the second sliding surface is designed in a 

terminal form. Then, combining the proposed finite-

time dynamic inversion control and the terminal 

sliding surface, the overall control law would render 

finite-time stable. 

Theorem 3: in this part, the second sliding 

surface is designed to help generate a dynamic 

form for the proposed control input that would 

eliminate the chattering phenomenon. 

The second terminal sliding surface is designed as: 

1 2/ = + =σ s s 0                        (29) 

Where,  is an adjustment gain chosen as a positive 

scalar. Also,
1 and 

2  are the positive scalars that are 

selected as 
1  and 

2  are positive odd numbers and 

1

2

1 2



    . 

In equation (29), s  is the proposed sliding surface:  

0

[ ( ) ( ) ] 0
t

t
t d = − = noms Γ ψ ψ             (30) 

Then by determining the derivative of equation (30) 

concerning time and applying finite-time dynamic 

inversion (25) as a nominal control input, equation 

(31) is released: 

1[ ]= +2s Bu B D             (31) 

According to equation (30), the initial values of the 

system do not need to be specified for designing the 

sliding mode control. This is based on the last 

deduction that the proposed nonsingular terminal 

sliding mode leads errors to the sliding surface (30), 

then they slide to the origin. Thus, a constant 

proportional law [26] is proposed for the terminal 

sliding mode: 

1 2sgn( ) = − −σ σ σ                                     
 (32)

 

that
1 2, 0   . 

The derivative of sliding surface (28) is 

1 2 2 1 2 2 1 2/ / 2 /1 1 2

2 2 1

( ) ( )( )Diag Diag         
 
  

− − −= + = +σ s s s s s s (33) 

Considering 
1 and 

2   in (33), we have [27] 

1 2 2

1 2 2

/

/

0 for 0

0 for 0

s s

s s

  

  

−

−

 

= =
                (34) 

Then, we can replace 1 2 2/1

2

( )Diag   



−
s  with a 

positive constant 
3  for 0s   

1 22 /2
3

1

( ) 




−= +σ s s                             (35) 

Considering equation (32) 

1 22 /2
3 1 2

1

( ) sgn( ) 
  



−= + = −σ s s σ σ                 (36) 
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or  

1 22 /2 1 2

1 3 3

( ) sgn( )   

  

−= + = − −σ s s σ σ                 (37) 

The equation (37) can be written as: 

1 22 /1 2 2

3 3 1

sgn( )    

  

−= − −s σ σ s                           (38) 

Also the derivative of equation (31) with respect to 

time is calculated as: 

1( )B  = + + 2 2s Γ Bu Bu d                                    (39) 

Then, the following control law is proposed: 

1 22 /2 1 2

1 3 3

sgn( )   

  

− 
= − + + + 

 
2 2ΓBu s ΓBu σ σ     (40) 

Proof: 

Considering the following Lyapunov function: 

1
( )

2
Diag=V σ σ                                    

(41)
    

 

The derivative of Lyapunov function (41) is 

( )Diag=V σ σ          

 (42)
  
 

Applying equations (38) and (39), we have: 

𝑉̇ = 𝐷𝑖𝑎𝑔(𝜎)(𝑠̇ + 𝛽
𝜆1

𝜆2
 𝐷𝑖𝑎𝑔(𝒔̇𝜆1 /𝜆2  )𝒔̈) = 

𝐷𝑖𝑎𝑔 (𝝈)(𝒔̇ +  𝜷
𝝀𝟏

𝝀𝟐
 𝐷𝑖𝑎𝑔(𝒔̇𝝀𝟏/𝝀𝟐) 𝚪(𝑩̇𝒖𝟐

+ 𝑩𝒖̇𝟐
+

(𝑩𝟏 𝒅)′))                                                       (43) 

Applying control input (40), we have: 

1 2

1 2 2 1 2

1 2 2

1 2 2

/1

2

/ 2 /1 2
1

2 1

/1 1 2
1

2 3 3

( )/1

2

( )( ( ) )

( ) ( )( ( ) ))

( ) ( )( sgn( ) ( ) )

( )(

Diag Diag

Diag Diag B

Diag Diag B

Diag

 

    

  

  





 

 

  

  

 



− −

−

−

= + =

 + + + 

  
= − − +  

   

= −

2 2

V σ s s s

σ s s Γ Bu Bu d

σ s σ σ d

s

1 2 2

21 2

3 3

( )/ 21 1 2
2

2 3 3

)

( )D  




 

  

  

− 

− +

 − − +

1
σ σ B d

s σ σ σ

    

        (44) 

since 1 2 2( ) /  −
s is equal to zero for 0=s and is 

positive for 0s  , and also because 2D  is bounded, 

it can be concluded that  V is negative definite and 

therefore the proof is achieved  . 

Simulations 

This section presents numerical simulations to 

confirm and validate the introduced guidance laws. 

The simulations in this research have been done 

using MATLAB/Simulink. Besides, the ODE45 

solver has been applied to solve the nonlinear 

equations. To illustrate the proper performance of 

the proposed guidance methods, the initial values of 

the guidance system are as follows. 

The initial values of the guidance system are as 

follows. The interceptor maintains a constant speed, 

which is 850 /mV m s= . In addition, the constant 

speed of target is 850 /tV m s= . The initial 

distance between interceptor and target is 

(0) 12000R = . The initial elevation angle and 

azimuth angle of LOS to inertial reference 

coordinate system are (0) 30L =  and 

(0) 30L = . On the other hand, initial elevation 

and azimuth angles of the interceptor to LOS 

coordinate system are (0) 10m =  and 

(0) 10m = . Also, initial elevation and azimuth 

angles of the target are (0) 20t =  and

(0) 180t = , and the desired angles are 35Lf =  

and 5Lf = . 

To examine the effectiveness of the proposed 

guidance law, the proposed law is compared with 

PNGL and SMC. The PNGL can be expressed as: 

1

2

L

L

N R

N R





 −
=  

− 
U                             (45) 

Where, 
1N  and 

2N are tuning constant parameters. 

The sliding mode control is presented with the 

following linear surface: 

1

2

s

s


 
= = + 
 

S E E  

And the SMC guidance law is designed as: 

1( sgn( ))−= − − −U B F k s                            (46) 

Where, 
1 2( , )diag k k=k and 

2 1 1I D 

 k , also the 

PNGL parameters are selected as 
1 7N =  and 

2
7N = . 

The interceptor cannot provide a large magnitude of 

acceleration. Therefore, in practice, the actual 

interceptor acceleration is limited by: 

( )M MAX M M M MAX

M

M M M MAX

a sign a if a a
a

a if a a

 
= 


             (47) 

Where, 40M MAXa g= is the maximum allowable 

lateral acceleration. 

Also, for better comparison, cumulative velocity 

increment is defined as follows: 
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0

ft

v adt =                    (48) 

To reveal the efficiency of the provided guidance 

law, we discuss the following two cases. 

Case 1: 219.6 /yt zta a m s= =  

Case 2: 2, 19.6sin( )* ( 4) /yt zta a t u t m s= − where 

( )u t is the step function 

These assumptions are taken into account according 

to references [28, 29]. 
The parameters of DFDISMC Guidance law are 

given in table 1. 

Table 1. The DFDISMC guidance law parameters 

 
In this section, the SMC and PNGL methods are 

chosen for comparison to effectively evaluate the 

superiority of the proposed guidance law in 

convergence, speed and accuracy.  

Case 1: 

In figures. 2-5 the simulation results for the target 

with accelerations case 1 are presented. 

 
Figure 2. The relative distance between the interceptor 

and the target 

Figure 2 shows the relative distance between the 

interceptor and target under three guidance laws. 

The interceptor can successfully reach the target by 

the three guidance laws, although the interception 

time is different. As can be seen, the interceptor 

reaches the target in less than 11 seconds under SMC 

and DFDISMC laws. Nevertheless, it reaches the 

target in 7 seconds under the PN guidance law. By 

comparing the reaching time, the PN guidance law 

performs better. 

 
Figure 3. Curves of L  and L  

The angles L  and L  are shown in figure 3. As it 

can be seen, L  and L  under SMC and DFDISMC 

guidance laws converge to the reference angles, 

while these angles under PNGL do not converge to 

the LOS angles. This is the main drawback of the 

PN guidance law. Despite the high convergence 

rate, the LOS angles cannot converge to the desired 

angles.  

By comparing DFDISMC and SMC methods, it is 

clear that the LOS angles under the DFDISMC 

guidance law have a faster convergence rate and 

Better performance than the SMC protocol 

 

Figure 4. Curves of L  and L  

In Figure 4, the derivative of the angles, L  and L  

are presented concerning time. The derivative of the 

angles should converge to zero. As evident, the 

derivative of the angles under DFDISMC converges 

to zero faster and with less error value than the SMC 

method. 

 
Figure 5. interceptor accelerations 

As can be seen in Figure 5, the acceleration of the 

three guiding rules is within the acceptable range. 

The acceleration of the PNGL guidance law is very 

smooth. However, as mentioned, it cannot reach the 
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target with desired angles. The acceleration of the 

interceptor under SMC guidance law suffers from 

the chattering phenomenon, which is visible near 

collision and is very destructive. Despite the 

multiple times' entry into the saturation part, the 

acceleration of the DFDISMC law is smooth. The 

guidance system purposes are fully met, and the 

chattering phenomenon is eliminated. 

 

Case 2: 

The simulation results are shown in Figures 6-9 for 

the target with accelerations case2. 

 

Figure 6.  Relative distance curves 

Figure 6 shows the relative distance curves between 

the interceptor and target under three guidance laws. 

The interceptor reaches the target under all three 

guidance laws at appropriate times. As in case 1, the 

interceptor under the PN guidance law reaches the 

target in less time, and the interceptor reaching time 

under the SMC and the DFDISMC laws is almost 

equal. 

 
Figure 7.  Impact angles L  and L  

It is evident in figure 7 that both SMC and 

DFDISMC ensure the LOS angles converge to 

expected values, whereas the PNGL cannot do it. It 

should be noted that despite the proper performance 

of methods DIDISMC and SMC, DFDISMC yields 

better performance and faster convergence. 

This figure is crucial as it shows the proper 

performance of the proposed guidance law and the 

impact of expected angles on the 

maneuvering target with variable accelerations. 

 

 
Figure 8.  LOS angular rate 

Figure 8 shows the LOS angular rates. LOS angular 

rates should converge to zero. As can be seen, LOS 

angular rates converge to zero under DFDISMC and 

SMC guidance laws. However, the convergence rate 

is faster under the DFDISMC guidance law.  

 
Figure 9.  LOS angular rate 

Figure 9 shows the interceptor accelerations, and it 

can be seen that the lateral accelerations are in 

reasonable scales under the three different guidance 

laws. In the figure, the chattering effect can be seen 

for the SMC guidance law, which is undesirable and 

destructive. In contrast, the chattering effect is 

eliminated with the proper design of the DFDISMC 

guidance law, and the lateral accelerations are 

smooth. 

Table 2 presents the Numerical results, including 

interception time, miss distance, LOS angle error, 

and interceptor acceleration for two studied cases 

performed utilizing the three guidance laws. 

Table 2. performance comparison of three guidance 

laws 

 

Table 2, for case 1, shows that the interception times 

under the guidance laws of DFDISMC and SMC are 

approximately equal (10.5 sec). However, the 
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interception time derived by PNGL law is less (8.2 

sec). For the miss distances and LOS angle errors, 

the DFDISMC guidance law shows better 

performance, and these values are much less than 

those under SMC and PNGL. Furthermore, the 

investigation of cumulative velocity increments 

shows the proper performance of the DFDISMC 

method. A similar trend can be seen in case 2. The 

interception times for DFDISMC and SMC 

guidance laws are similar. DFDISMC and SMC 

show much better performance for the LOS angles 

errors than the PN guidance law. Besides, for the 

cumulative velocity increments, DFDISMC with 

243 m/s shows better performance. 

Conclusion 

This paper proposed a novel composite guidance 

law based on dynamic inversion sliding mode 

control with terminal impact angle constraint. This 

proposition was made to aid in effectively impacting 

the interceptor in maneuvering targets. In this paper, 

a novel composite guidance law based on dynamic 

inversion sliding mode control was proposed for the 

interceptor impacting maneuvering targets with a 

terminal impact angle constraint. Moreover, the 

finite impact time in desired angles was shown to be 

rendered true. As was established, the chattering 

phenomenon is the main disadvantage of the sliding 

mode control method. Thus, this paper proposes a 

dynamic form of sliding mode control achieved by 

employing a second sliding surface. The attainment 

of the first-order dynamic of the achieved input 

allows for the chattering problem to be eliminated. 

Ultimately, the simulation results validated the 

theoretical theorems. The simulation demonstrated 

that the DIFTSMC guidance law performed 

substantially better than both PNGL and SMC 

methods. In this research, it was assumed that the 

upper bounds of target accelerations are available. 

For future studies, estimating target accelerations 

can be a viable choice. 
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