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Recently, engineering systems are quite large and complicated. 

Conceptual design process of Space Transportation Systems (STSs) 

is a multidisciplinary task which must take into account interactions 

of various disciplines and analysis codes. Current approach for the 

conceptual design of STSs requires the evaluation of a large number 

of different configurations and concepts. With existing legacy codes, 

estimating the performance of all design combinations becomes very 

time consuming and computationally expensive. A possible solution 

to this problem could be employing surrogates during design tasks. 

This paper describes an effort to optimize the design of an entire STS 

to achieve a low Earth orbit, consisting of multiple stages using an 

efficient surrogate-based Multidisciplinary Design Optimization 

(MDO) framework with the goal of minimizing vehicle weight and 

ultimately vehicle cost. Furthermore, a combination of Response 

Surface Methodology (RSM) and Kriging surrogates has been used 

for building surrogate models. The disciplines of aerodynamics, 

propulsion, trajectory simulation, geometry, and mass properties, 

have been integrated to produce an engineering system model of the 

entire vehicle. In addition, the system model has been validated using 

the existing design data of STS’s trajectory and their subsystems. For 

the design optimization, in order to ensure that the payload achieves 

the desired orbit, a hybrid algorithm has been used to minimize the 

deference between the actual and the desired orbital parameters. The 

objective function of the optimization problem is to minimize the 

overall system mass, thus minimizing the system cost per launch. The 

proposed design and optimization methodology provides designers 

with an efficient and powerful approach in computation during 

designing space transportation systems and can also be developed for 

more complex industrial design problems with comparable 

characteristics. 
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Introduction 

The design of complex products requires extensive 

investigations regarding the response of the 

product due to external loads. This could be done 

by physical experiments or computer 

simulations.In recent years, increased focus has 

been put on detailed computer simulations. 

However, these simulations can be very 

demanding from a computational point of view. 

Therefore, in many situations, e.g. during 

optimization of product performance, there is a 

need for a simplified model that could provide an 

efficient representation of the detailed and costly 

model of the product. These simplified models are 

called surrogate models. If the model is a surrogate 

for a detailed simulation model it is called a 

surrogate. Since this document focuses on 

optimization based on simulations, the term 

surrogate will be used throughout the text. 

Surrogates are created by a mathematical 

description based on a dataset of input and the 

corresponding output from the detailed simulation 

model. The mathematical description, i.e. meta-

model type, suitable for the approximation could 

vary depending on the intended use or the 

underlying physics that the model should capture. 

Different datasets are appropriate for building 

different meta-models. The process of where to 

place the design points in the design space, i.e. the 

input settings for the dataset, is called Design of 

Experiments (DOE). 

Traditionally, the meta-models have been simple 

polynomials, but other meta-models that are better 

at capturing complex responses are increasing in 

popularity. Space Transportation Systems (STSs) 

are among the most considerable segments in 

planning of space missions. Conceptual design 

phase of these systems is an interdisciplinary field. 

The last goal of this process is to manufacture a 

STS that fulfils the requirements of the customers. 

The conceptual design phase contains various 

interactions between specialized disciplines such 

as propulsion, aerodynamics, cost, and trajectory 

simulation to mention a few, which sometimes 

faces conflicting objectives and constraints. 

Conceptual design of STSs is a complex and 

decision making process which aims at choosing 

from a collection of choices implying an 

irrevocable allocation of resources. Recently, 

emphasis has been on the advances that can be 

achieved through the interaction between two or 

more disciplines. Thus, it is fundamentally a 

multidisciplinary process. 

Multidisciplinary engineering systems are 

complex systems whose interconnected 

subsystems belong to different physical domains. 

Traditional design methodologies for such systems 

rely on subsystem partitioning, and hence they 

often result in more iterations and less desirable 

outcomes. Whereas traditional design 

methodologies suffer from the aforementioned 

drawback, a concurrent approach emphasizes the 

physical integration and communication amongst 

the subsystems. As research on Multidisciplinary 

Design Optimization (MDO) has matured, the 

number of methods available to solve a given 

problem has increased. These methods can be 

divided into two classes: monolithic formulations 

and multilevel formulations. Monolithic 

formulations that include All-At-Once (AAO) [1], 

Multidisciplinary Design Feasible (MDF) [2], 

Individual Discipline Feasible (IDF) [3], and 

Simultaneous Analysis and Design (SAND) [4] 

architectures, apply a single system-level 

optimizer to the whole problem. Also, distributed 

formulations such as Collaborative Optimization 

(CO) [5], Concurrent Subspace Optimization 

(CSSO) [6], Analytical Target Cascading (ATC) 

[7], and Bi-level Integrated Systems Synthesis 

(BLISS) [8], use subspace optimizations to 

promote discipline autonomy. 

There have been many studies on the literature that 

propose systematic design optimization 

methodologies to solve a space system design 

problem [9-14]. In the past two decades, 

approximation methods and approximation-based 

optimization have attracted intensive attention. 

These types of approaches approximate 

computation intensive functions with simple 

analytical models. The simple model is often 

called meta-model; and the process of constructing 

a meta-model is called meta-modelling. With a 

meta-model, optimization methods can then be 

applied to search for the optimum, which is 

therefore referred to as Meta-model-Based Design 

Optimization (MBDO) [15] and also general 

framework for surrogate-based numerical 

optimization is presented [16]. Some applied 

articles related to multidisciplinary escalator 

simulation [17], optimal design [18], probabilistic 

optimization [19], optimization using improved 

response surface methodology [20], and vortex 

breakers effectiveness in launch vehicle 

mass/energy capabilities [21]. In the last method 
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the concept of a modular surrogate can be easily 

coupled with any optimization method. 

Furthermore, a multi-objective, multidisciplinary 

design optimization methodology for the 

conceptual design of a spacecraft bi-propellant 

propulsion system is developed [22].  Shafaee et al. 

[23] proposed a mass-based model to improve the 

geometrical and performance parameters of space 

propulsion systems. They investigated a mass-

based model for optimization process. Their 

method used a hybrid GA sequential quadratic 

programming as an optimizer. The mass-based 

formulation problem was solved using a hybrid 

optimization algorithm with a GA as the global 

optimizer and sequential quadratic programming 

as the local optimizer starting from the solution 

given by the GA. Xuan and Lam [24], have studied 

the Multidisciplinary Design Optimization (MDO) 

using RSM, GA, and also simulated annealing. 

The article developed a novel framework for 

MDO. In terms of optimization algorithms, RSM, 

GA, and simulated annealing are utilized to get a 

global optimum. Naseh et al. [25] developed an 

adaptive multi-objective multi-disciplinary robust 

design optimization framework. From the 

literature, it was seen that there is limited work on 

multi-objective optimization of STS. Hence, in the 

present work, an attempt has been made to 

optimize a STS using the integration of the MDF 

and DOE. Thus, the presented methodology can be 

developed using the surrogate in design 

framework and choosing the number and the types 

of the disciplines, objectives, and applications in 

the MDO framework and in conclusion reducing 

process time by using surrogate. 

In the past few years, new developments in meta-

modelling techniques have been continuously 

coming forth in the literature. 

So far little attention has been paid to the 

surrogate-based design optimization of the STSs. 

This paper describes an effort to optimize the 

design of an entire STS to achieve a low Earth 

orbit, consisting of multiple stages using an 

efficient surrogate-based MDO framework with 

the goal of minimizing vehicle weight and 

ultimately vehicle cost. Furthermore, a 

combination of Response surface methodology 

(RSM) and Kriging meta-models has been used for 

building surrogate models. The paper continues on 

section 2 which introduces the design problem. 

Section 3 presents the optimization methodology. 

Section 4 shows the implementation of the design 

problem in a MDO framework. Finally, the 

conclusions are drawn. 

System modelling  

Problem definition 

In recent years, there has been an increasing 

demand for higher performance STSs for future 

space missions. In order to improve the 

performance of these types of systems, a design 

process integration approach is presented to 

optimize the design process. To demonstrate that 

STS conceptual design problem can be formulated 

as an MDO problem and to develop a suitable 

MDO architecture, conceptual design of a Two 

Stage STS is considered for studies. The mission 

is to deliver 1400 kg payload (satellite) to a 

circular low earth orbit (400 km) at an inclination 

of 55 degrees. Propulsion system in each stage is 

liquid propellant engine. Though the number of 

stages may also be one of the design variables, 

however, in this study it is fixed as two. The 

payload weight and volume requirements are 

specified in problem definition before the 

optimization is computed. Also, for the current 

study, two stage liquid propellant STS have been 

validated against a real-world example. The real-

world example chosen to validate the design model 

was the Kosmos STS. Given the known 

parameters for the real-world examples (payload 

mass, types of propellants, etc.), the system model 

was manipulated in an attempt to match the 

physical properties and the performance 

characteristics of the real-world example. The 

known parameters used were the payload mass to 

orbit, the desired altitude and velocity, the 

individual stage geometry (diameter and length), 

and the individual stage propellants.  

The disciplines are weight-sizing, combustion 

analysis, propulsion, aerodynamic, and trajectory 

analysis. The disciplines participating in the MDO 

problem are represented as modules (codes) for 

which inputs and outputs are identifiable. It should 

be noted that the design process is limited to 

technological and geometrical constraints. For 

example, diameter of the thrust-chamber and fuel 

and oxidizer tanks radius (allowed by the 

installation in the upper stage) are geometrical 

constraints, which are considered based on overall 

system specifications. Modelling of the design 

process consists of employing a suit of analysis 

modules based on a combination of physical and 

empirical models. Furthermore, over one hundred 
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of variables (including design variables, coupling 

variables, state variables) and parameters were 

used in modelling the conceptual design of the 

presented system, and the most important ones are 

briefly described as follows. 

Combustion 

Modeling and simulation of the combustion 

process, is one of the most important requirements 

in determining the performance of a bi-propellant 

propulsion system. In this research, NASA Glenn's 

computer code CEA (Chemical Equilibrium with 

Applications) is applied to determine the 

properties of the combustion products. CEA is a 

fast and accurate combustion code, which is 

usually used to analyze and validate combustion 

processes [26]. Minimization of free energy 

approach to chemical equilibrium calculations has 

been used in all versions of this program [27]. In 

this analysis module chemical equilibrium 

analysis was performed for modeling an adiabatic 

combustion. Three main inputs of the combustion 

discipline are oxidizer and fuel type, combustion 

chamber pressure, and oxidizer to fuel ratio. These 

design variables are the key aspects in designing 

bi-propellant systems. Combustion chamber 

pressure affects the size and the specific impulse 

(Isp) of the engine.  

Generally, the propellant type and the optimum 

oxidizer to fuel ratio are determined based on 

many major factors (i.e. propellants density, 

cooling considerations, and start capability). It is 

obvious that deviations from these values will 

penalize vehicle performance. In this study, a 

response surface model (RSM) has been applied as 

a combustion analyzer based on data generated by 

CEA code. For example, the variation of 

combustion temperature, computed in the RSM 

with respect to oxidizer to fuel ratio and 

combustion chamber pressure for N2O4/UDMH is 

shown in Fig. 1. 

Engine design 

The engine design analysis code uses gas 

dynamics equations to calculate propulsion system 

characteristics. During the preliminary design, 

allocations and assumptions were considered to 

simplify the design process. The most important 

assumptions are adiabatic combustion, complete 

combustion, and homogeneous mixing during 

combustion. Inputs of this discipline consist of a 

set of design variables, design parameters, and 

coupling variables. In this discipline, specific 

impulse, engine geometry, and other performance 

specifications are computed. The design of the 

nozzle is influenced by many design 

considerations such as weight, performance, 

manufacturing, geometry constraints, etc. The 

final design would be based on a tradeoff among 

the benefits of improved performance and 

penalties of increased weight and greater 

complexity. In this research, parabolic geometry 

approximations [28] were used to estimate the 

bell-nozzle dimensions. This technique works well 

enough and its accuracy is acceptable in the 

conceptual design phase. Moreover, characteristic 

length method was used to estimate the chamber 

geometry. This method is based on engine test data 

and gas-dynamic considerations. In the current 

study, for calculating the real Isp, several Isp losses 

(e.g. combustion and nozzle) based on empirical 

and statistical data have been considered. The 

engine design module has been validated using 

design data of the liquid propulsion systems. 

Validation results for the vacuum Isp are shown in 

Fig. 2 and Fig. 3. 

 

Fig. 1. Combustion temperature versus oxidizer to fuel 

ratio and combustion chamber pressure for 

N2O4/UDMH 
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Fig. 2. Accuracy of the design model for predicting 

vacuum Isp for gas generator cycle 

 

Fig. 3. Accuracy of the design model for predicting 

vacuum Isp for staged combustion cycle 

Aerodynamics 

The aerodynamics model computes aerodynamic 

properties of the flight vehicle during mission 

phases. In the present paper, US Air Force Missile 

DATCOM [29] code is used to estimate 

aerodynamic coefficients of different 

configurations. It is capable of rapidly and 

economically computing the aerodynamics of a 

wide variety of vehicle configurations and it has 

the predictive accuracy appropriate for the 

conceptual design phase. In this discipline based 

on flight condition, vehicle configuration, etc., 

aerodynamic tables are generated and transferred 

to the trajectory discipline. Axial force coefficient 

and normal force coefficient versus angle of attack 

and Mach number for a specific configuration are 

illustrated in Fig. 4. In the design process, for 

optimizing the shape of STS, several fairing 

configurations could be considered as discrete 

design variables. The effect of fairing shape on 

drag coefficient is shown in Fig. 5. As can be seen 

from Fig. 5, fairing shape has a big impact on the 

aerodynamic coefficients of flight vehicle. 

 
Fig. 4. Axial force coefficient and normal force coefficient versus angle of attack and Mach number for a specific 

configuration 
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Fig. 5. Different fairing configurations for predicting aerodynamic properties 

Weights and sizing 

This sub-section describes the weight/sizing 

model programmed for the STS design problem. 

The STS weight is of prime importance for 

optimization procedure. There are two main 

models to estimate the weight of a vehicle that are 

analytical models and statistical models. 

Analytical models are not easy to develop for 

estimating the weight of STS due to complexity 

and lack of sufficient data in conceptual design 

phase. In addition, the development of these 

models needs to use some assumptions that can 

make the problem easy to simulate. Because the 

statistical models need to establish a database for 

estimating the weight of subsystems, the weight of 

components is estimated as total system weight. In 

the present paper a combination of analytical and 

statistical models has been used in order to 

estimate the weight of the STS. Sizing model 

calculates areas and volumes for the major 

components of the vehicle, which are inputs to the 

aerodynamic module and also Mass Estimating 

Relationships (MERs) in the weights tool. The 

mass of a stage can be calculated as: 

 

 

Mstage = KC(MBody Group + MPropulsion Group

+ MOther) 
(1) 

MBody Group = KS(Mtanks + Mantivortex

+ Mslash baffles + Mintertank

+ Minterstage + Mforward skirt

+ Maft skirt

+ Mengine compartment

+ Mthrust structure) 

(2) 

MPropulsion Group = Mengines + Mengine installation

+ Mengine subsystem

+ Mthrust vector control

+ Mpropellant purge + Mfeed

+ Mpressurization system  

(3) 

Mother = Mreaction control system + MAvionics

+ MPrimary Power

+ MHydraulic Systems

+ MResidual Propellants

+ MAscent Reserve Propellants 

(4) 

Where KC and KSare the technology level factor 

denote structure and propellant type coefficient. 

Furthermore, it should be noted that the KC 

depends on the material alloy type that for 

aluminum alloy is considered equal to 1. In the 

case of KS depends on fuel and oxidizing 

(propellant) types. For storable propellant, KS is 

considered to be 1 and for hydrogen fuel is 
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considered to be 2. In this paper, the engine weight 

as function of the pressure expansion ratio and 

thrust is calculated by an efficient RSM (Fig. 6). 

The feasible area, the scattering (accuracy) of 

applied model is shown in Fig. 7. In the design 

optimization process, state variables for Sizing 

tool can be updated at each iteration of the design 

loop. Geometry updates of the design loops enable 

high-fidelity tracking of configuration and 

aerodynamic effects on vehicle closure. 

 
Fig. 6. Response surface model for predicting engine 

mass 

 
Fig. 7. Scattering and accuracy of statistical data 

fitting 

Trajectory analysis 

In a typical STS design optimization problem, the 

main outputs of the trajectory module are the 

constraints of the problem. These constraints are 

intermediate constraints and final orbit constraints. 

The final orbit constraints are usually specified by 

the customer depending on the payload mission. 

The final position and velocity constraints are 

specified in terms of orbital elements (apogee 

altitude, perigee altitude, inclination, perigee 

argument and etc.). The intermediate constraints 

are either linked to environment loads that the 

launcher or the payload can stand (maximum 

dynamic pressure, heat flux or acceleration), or to 

operational requirements.  

The trajectory model used in this study is derived 

from the following classical 3D dynamics 

equations, written in an Earth-centered, Earth-

fixed referential. 
𝑟̇ = 𝑉𝑠𝑖𝑛𝛾 (5) 

𝑉̇ =
𝑇𝑐𝑜𝑠(𝜃 − 𝛾) − 𝐷

𝑚
− 𝑔(𝑟) sin(𝛾)

+ 𝜔2𝑟𝑐𝑜𝑠𝜑(sin𝛾𝑐𝑜𝑠𝜑
− cos𝛾𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜓) 

 

(6) 

𝛾̇ = 𝑐𝑜𝑠𝜇
𝐿 + 𝑇𝑐𝑜𝑠(𝜃 − 𝛾)

𝑚𝑉
+ (

𝑉

𝑟
−

𝑔(𝑟)

𝑉
) cos𝛾

+ 2𝜔𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜑

+
𝜔2

𝑉
𝑟𝑐𝑜𝑠𝜑(cos𝛾𝑠𝑖𝑛𝜑

− sin𝛾𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜓) 

(5) 

𝜆̇ = V
cos𝛾𝑠𝑖𝑛𝜓

𝑟𝑐𝑜𝑠𝜑
 (6) 

𝜑̇ = V
cos𝛾𝑠𝑖𝑛𝜓

𝑟
 (7) 

𝑚̇ = 𝑞 (8) 

 

Where 

𝑟 radius (m) 

𝑉 Norm of velocity vector(ms−1) 

𝛾 Flight path angle (rad) 

𝜑 Latitude(𝑟𝑎𝑑) 

𝜆 Longitude(𝑟𝑎𝑑) 

𝜓 Flight path heading (rad) 

𝜇 Bank angle (𝑟𝑎𝑑) 

𝜃 pitch angle (𝑟𝑎𝑑) 

𝜔 Earth angular Velocity(𝑟𝑎𝑑𝑠−1)  

𝑇 Thrust (𝑁) 

𝐷 Drag (𝑁) 

𝐿 Lift (N) 

𝑔(𝑟) Gravity acceleration (m2s−1) 

𝑚 Mass (kg) 

𝑞 Mass flow rate (kgs−1) 

The trajectory module cannot generate correct 

trajectories for each set of input. Since there is 

hardly any detailed data at the beginning of STS 

conceptual design, it is computationally expensive 

to use 6-DOF trajectory simulation during this 

phase. Therefore, in this study a three-degree-of-

freedom (3-DOF) trajectory analysis was used. 

State variables are altitude, velocity, and flight 

path angle. Pitch rate is the control variable, which 

is determined by the optimizer. The trajectory 

analysis computes state variables by integrating 

ordinary differential equations of motion with 
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given design variables and examining constraints 

conditions during the flight [30]. 

Optimization approach  

Multidisciplinary Feasible (MDF) framework 

In general, MDO problems, three main categories 

of variables are defined. Design variables are 

independent quantities that are controllable from 

the designer’s point of view. Typically, design 

variables can be classified into continuous, 

discrete (including integer and categorical), and 

Boolean types. In the MDO frameworks, they are 

always under the explicit control of an optimizer. 

State variables represent analysis results of the 

disciplinary analysis, and depend on the design 

variables and state equations. In the MDO process, 

analysis modules are connected with each other by 

coupling variables. An MDO problem can be 

formulated in a standard form as [13]: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥. 𝑦. 𝑧) 

(9) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥. 𝑦. 𝑧) ≤ 0 

ℎ(𝑥. 𝑦. 𝑧) = 0 

∀𝑖. 𝑅𝑖(𝑥𝑖 . 𝑦𝑖 . 𝑧𝑖) = 0 

∀𝑖. ∀𝑗 ≠ 𝑖. 𝑦𝑖

= {𝑐𝑗𝑖(𝑥𝑗 . 𝑦𝑗 . 𝑧𝑗)}
𝑗
 

𝑖 = 1. … . 𝑛 

𝑊𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑥 = {𝑥𝑠ℎ . 𝑥̅𝑘} 

Where 𝑥 is the vector of design variables. 𝑥𝑠ℎ 

symbolizes the variables which are shared between 

different subsystems (global variables) and 

𝑥̅𝑘denotes the variables which are specific to one 

subsystem (local variables). 𝑧 is the vector of the 

state variables; 𝑦 is the vector of the coupling 

variables; Also, 𝑓(. ) is the objective function (i.e. 

cost function). The inequality constraints are 

described by 𝑔(. ), and ℎ(. ) represents the equality 

constraints. 𝑐𝑗𝑖(. )symbolizes coupling functions 

which calculate the coupling variables from the 

subsystem 𝑖 to the subsystem 𝑗. 𝑅𝑖(. ) characterizes 

the residual functions for the subsystem 𝑖, which 

quantify the satisfaction of the state equations, and 

𝑛 is the number of the subsystems. (. )𝑖 represents 

functions or variables that apply to subsystem 𝑖. 
Selection of proper MDO architecture depends on 

many factors such as the nature of design problem. 

In the presented design problem, because of strong 

coupling between disciplines, MDF was selected 

for solving the optimization problem.  

MDF is the most general MDO formulation and 

has a comprehensive industry acceptance. The 

MDF, moreover known as fully integrated 

optimization and “all-in-one (AiO)” solves the 

optimization problems with different subsystems, 

simultaneously. In this framework, a system 

analyzer coordinates all of the subspace analyzers 

and the system level optimizer controls the design 

process, ensuring that the global objective is 

achieved while the design constraints are satisfied. 

In design problems that deal with coupled systems, 

some analysis methods (i.e. Fixed Point Iteration 

and Newton-Raphson) are regularly employed 

within an MDF approach. Compared with other 

monolithic formulations, the major benefit of 

MDF framework is that the dimension of 

optimization problem is as small as it can be for a 

monolithic formulation. Another advantage of this 

framework is that in each optimization iteration, 

MDF returns a solution that always satisfies the 

consistency constraints, but it may be time-

consuming. The MDF architecture for the STS 

design problem and coupling relationships of the 

disciplines are described with a Design Structure 

Matrix (DSM) shown in Fig. 8. Coupling variables 

definition is presented in Table 1. 
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Fig. 8. MDF architecture for the STS design problem 

Table1. Coupling variables definition 

Coupli

ng 
definition 

Coupli

ng 
definition 

X12 

Propellant 

Thermo-

chemistry 

Properties 

X34 
Geometry, 

CG 

X13 
Propellant Mass 

and Density 
X35 

Geometry, 

CG, 

System 

Mass 

X21 

Chamber 

Properties(PCC,

TCC,) 

X45 

Aerodynam

ic 

Properties 

X23 

Engine 

Geometry, 

Chamber 

Properties(PCC,

TCC,) 

X53 
Environme

ntal load 

X24 
System 

Geometry 
X54 

Environme

ntal load 

X25 Isp - - 

Surrogate-based design optimization 

The detailed simulation models used for STS 

design are often computationally too expensive to 

calculate. Surrogate-based design optimization, in 

which surrogate is used for the evaluations, can 

then be an efficient approach to decrease the 

required computational effort. [15] This is in 

contrast to direct optimization where the 

evaluations are conducted using the detailed 

simulation models directly. The detailed models 

used in direct optimization are often 

computationally expensive to evaluate, which is a 

challenge when many evaluations are required, as 

when performing optimization studies. The idea of 

surrogate models originates from fitting a 

surrogate model to a series of designed physical 

experiments.  

In the present paper an efficient surrogate-based 

design optimization framework for designing the 

space transportation systems is presented. The 

mentioned approach uses Design of Experiments 

(DOE) methods and the intelligent use of response 

surface methodology and Kriging models for 

problem analysis and optimization. 

3.2.1. DOE 

Latin hypercube sampling (LHS) is a popular 

choice for Design of Experiments (DOE) [11, 12]. 

In the simplest version of LHS, each design 

variable is divided into intervals with equal 

marginal probability, and the unique sample values 

are randomly matched across all the variables to 

form all sample points by randomly permuting 

each factor column in the design. The samples 

generated by this sampling method are distributed 

uniformly in the design space.  

LHD was used in this study. Samples were 

repetitively generated for the meta-models 

evaluation and testing the surrogate models. 
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Finally all surrogate models passed the minimum 

98% Root Mean Squared Error (RMSE). 

3.2.2. Surrogate modeling  

Response surface methodology (RSM) approaches 

were originally developed to evaluate the results of 

experiments and generate empirically-based 

equations of the obtained response data. In the 

RSM methodology the number of coefficients to 

be calculated is determined by the number of 

design variables involved and the order of 

polynomial. In the practical application of RSM, it 

is essential to develop an approximate model for 

the true response surface. The second-order 

(quadratic) response surface model is the most 

frequently applied one because it is the most 

economic non-linear model [31]. The quadratic 

RSM predictor ŷ(x)  for k factors can be defined 

as: 

ŷ(x) = β0 + ∑ βixi

k

i=1

+ ∑ βiixi
2

k

i=1

+ ∑ ∑ βijxixj

i−1

j=1

k

i=1

 

(10) 

Where β0, βi, βii, and βij are unknown coefficients 

to be estimated, xi and xj are design variables. In 

this paper, the RSM approach (quadratic and cubic 

predictors) is used to create approximations of 

complex and or long running models. The 

resulting response surface executes much quicker 

than the actual analysis codes used to create the 

response surface and is therefore more practical for 

design optimization frameworks which may 

require hundreds if not thousands of function 

evaluations.  

Kriging has been widely used in recent years for 

surrogate-modeling of computationally expensive 

simulations. Kriging models provide a statistic 

prediction of a simulation model by minimizing its 

Mean Squared Error (MSE). Prediction of the 

standard error is a major advantage of Kriging over 

other surrogate-modeling techniques. [32] This 

allows the surrogate to be dynamically updated 

based on the responses during a given optimizing 

procedure. The major disadvantage of the Kriging 

process is that model construction can be very 

time-consuming. Kriging provides a statistic 

prediction of an unknown function by minimizing 

its Mean Squared Error (MSE). It can be 

equivalent to any order of polynomials and is thus 

well suited for a highly-nonlinear function with 

multi extremes [33].  

The combustion chamber temperature surrogate 

model, one of the combustion subsystem models, 

is presented in equation 13. In this regard, the 

combustion chamber temperature is estimated in 

terms of combustion chamber pressure (Pcc(bar)) 

and oxidant-to-fuel ratio (OF). This model is 

extracted from 2500 samples with RMSE about 

98.7%. 

𝑇𝑐𝑐 = −928.7 − 10.7𝑃𝑐𝑐 + 3715𝑂𝐹 +
.8454𝑃𝑐𝑐

2  − 664.7𝑂𝐹2 −  3.637𝑃𝑐𝑐𝑂𝐹 +
0.1809𝑃𝑐𝑐

3  − 347.2𝑂𝐹3  − 4.311𝑃𝑐𝑐
2 𝑂𝐹 +

38.46𝑃𝑐𝑐𝑂𝐹2  − 0.0122𝑃𝑐𝑐
4  +

143.7𝑂𝐹4 + 0.1106𝑃𝑐𝑐
3 𝑂𝐹 +

0.7665𝑃𝑐𝑐
2 𝑂𝐹2 − 14.28𝑃𝑐𝑐𝑂𝐹3 +

0.2378 ∗ 10−3𝑃𝑐𝑐
5 − 14.66𝑂𝐹5 −

0.9773 ∗ 10−3𝑃𝑐𝑐
4 𝑂𝐹 − 0.012𝑃𝑐𝑐

3 𝑂𝐹2 −
0.034𝑃𝑐𝑐

2 𝑂𝐹3 + 0.489𝑃𝑐𝑐𝑂𝐹4  

(11) 

The flowchart of applied surrogate-based design 

optimization is shown in Fig. 9. As shown in Fig. 

9 optimization process begins with executing 

analysis codes and generating data based on the 

design of experiments techniques. Once the data 

from these initial runs has been generated, 

mathematical approximations (surrogate models) 

of objectives and each of constraints will be 

created. When the surrogate models are created, 

Sequential Quadratic Programming in conjunction 

with the surrogate models will be used to predict 

the optimum design(s) for the design problem. For 

complex design problems, it is likely that the 

predicted models by the initial data will not exactly 

correspond to actual results obtained from running 

the analysis codes. For some problems, in fact, the 

errors may be quite large. If this is the case, then 

the optimal designs obtained from the surrogate 

models were not really optimal after all [34]. 

Therefore, we need extra data in order to refine 

surrogate models and to use the newly updated 

surrogate models. After optimizing surrogate 

models, the results will be validated. This process 

continues until the optimum design is achieved.  

Results and discussion  

The design problem deal with the minimization of 

the STS mass, considering the design constraints 

as well as the side constraints on the design 

variables. Disciplines of the conceptual design 

model are all strongly coupled to each other in the 

MDF framework. Generally, performing 

engineering design optimization needs some 

information about the design phase, design 

parameters, design variables (independent 

variables), constraints, and the design objectives. 
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Design parameters identify constants that will not 

change as different designs and are generated 

during optimization. The design data for the STS 

design problem including design variables and 

constraints are presented in Table 1 and Table 3. 

In the MDF formulation, five disciplines were 

used to demonstrate the proposed methodology. 

Using the MDO architecture presented in Fig. 8 

and equation (9), the presented design problem has 

been solved. In this study, in order to evaluate the 

accuracy and efficiency of the introduced 

optimization method, a robust NSGA-II was used 

to solve the optimization problem. The GA 

parameters are shown in Table 4. The GA 

parameters including selection, crossover, and 

mutation as well as other parameters such as 

population size were utilized together to enhance 

the convergence rate of the optimization.   

 
Fig. 9. Flowchart of surrogate-based design optimization 

Table 2. Design variables for the STS design problem in the MDF architecture 

No. Design variable Symbol Unit Range 

1 Diameter D m 2-3 

2 Stage one propellant mass 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 1 kg 
40000-

100000 

3 Stage two propellant mass 𝑀𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 2 kg 
10000-

25000 

4 Stage one thrust 𝑇ℎ𝑟𝑢𝑠𝑡1 N 
1400000-

2000000 

5 Stage two thrust 𝑇ℎ𝑟𝑢𝑠𝑡2 N 
100000-

250000 

6 Combustion chamber pressure for stage one 𝑃𝑐𝑐1 bar 30-90 

7 Combustion chamber pressure for stage two 𝑃𝑐𝑐2 bar 30-90 

8 Oxidizer to fuel ratio for stage one (
𝑂

𝐹
)

1
 - 1.5-3 

9 Oxidizer to fuel ratio for stage two (
𝑂

𝐹
)

2
 - 1.5-3 

10 Exit pressure for stage one 𝑃𝑒1 bar 0.05-1 

11 Exit pressure for stage two 𝑃𝑒2 bar 0.01-0.5 

12 Vertical flight time 𝑡𝑣 s 6-15 

13 Pitch rate at flight stations 𝜃̇1. 𝜃̇2. 𝜃̇3. 𝜃̇4. 𝜃̇5 𝑟𝑎𝑑
𝑠⁄  

-0.01-(-

0.0005) 

Design of 
experiments 

(DOE) 

Build surrogates
Model Analysis

Rebuild Surrogates 

model accuracy

Design Space 
Refinement

OptimizationValidationAdd cycle?
Optimum 

Design

Problem 
Defenition

Yes

Yes

No

No
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Table 3. Design constraints for the STS design problem in the MDF architecture 

No. Design constraint Symbol Unit 
Lower 

bound 
Upper bound 

1 Nozzle exit area for stage one 𝐷𝑒1 m 0 0.8×D 

2 Nozzle exit area for stage two 𝐷𝑒2 m 0 0.4×D 

3 Length to diameter ratio 
𝐿

𝐷
 - 6 15 

4 Thrust to weight for stage one (
𝑇

𝑊
)

1
 - 1.4 2.5 

5 Thrust to weight for stage two (
𝑇

𝑊
)

2
 - 0.4 1 

6 Final velocity 𝑉 𝑚
𝑠⁄  7665 7671 

7 Final altitude H m 398000 402000 

8 Flight path angle 𝛾𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 deg -2 2 

9 Maximum dynamic pressure 𝑚𝑎𝑥𝑄  pa 0 70000 

10 Maximum axial load 𝑚𝑎𝑥𝐴 𝑙𝑜𝑎𝑑  g 0 7 

11 Maximum Q.Alpha 𝑚𝑎𝑥𝑄.𝐴𝑙𝑝ℎ𝑎  deg.pascal 0 200000 

12 
Angle of attack at maximum 

dynamic pressure 
𝐴𝑙𝑝ℎ𝑎max 𝑄 deg -1 1 

13 Angle of attack at separation 𝐴𝑙𝑝ℎ𝑎𝑠𝑒𝑝 deg -1 1 

14 Pitch rate at separation 𝜃̇𝑠𝑒𝑝 𝑟𝑎𝑑
𝑠⁄  0 0 

This paper does not intend to address the details of 

NSGA-II and only presents the results of applying 

it to compare the efficiency of the proposed 

methodology. After implementing the 

optimization problem on the MDF framework, it 

was solved by the NSGA-II and the proposed 

method and the convergence history is shown in 

Fig. 10 and Fig. 11. As shown in these figures the 

objective function in both situations is converged 

to a specific value. 
Table 3. Genetic Algorithm (GA) parameters for 

optimization problem 

No. Mode/Parameter Value 

1 Maximum Generations 600 

2 Population size 70 

3 Crossover 0.9 

4 Mutation 0.1 

5 Maximum constraint violation 0.01 

6 Percent penalty 0.05 

7 Stall generation limit 70 

 
Fig. 10.Convergence history of the objective function 

in the NSGA-II process 

 
Fig. 11.Convergence history of the objective function 

in the surrogate-based design optimization process 

While in the case of MBO the design problem with 

less functions evaluation is quickly converged, in 

the case of using GA, the number of functions 

evaluation and computation time increased 

dramatically. The results of optimization with the 

presented MBO method are presented and 

compared with a real world example (Table 4). In 

this method, the STS mass was optimized which 

was 8.87% lower than the Kosmos total mass. The 

presented MBO framework provides possibilities 

for solving complex multidisciplinary design 

problems such as the design of space 

transportation systems when using conventional 

optimization approaches are difficult or very time 

consuming. 
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Table 4.design characteristics for the selected optimal design 
No. Description Kosmos MBO Units 

1 Total mass 109700 99963.47 kg 

2 Stage one fuel mass 81900 77031.25 kg 

3 Stage two fuel mass 18700 14277.34 kg 

4 Stage one dry mass 5300 5614.56 kg 

5 Stage two dry mass 1435 1292.31 kg 

6 Diameter 2.4 2.267 m 

7 Length 32.4 32.130 m 

8 Stage one thrust 1745000 1682421 N 

9 Stage two thrust 157000 103808 N 

10 Combustion chamber pressure for stage one 75 89 bar 

11 Combustion chamber pressure for stage two 98.1 90 bar 

12 Oxidizer to fuel ratio for stage one 2.5 2.358 - 

13 Oxidizer to fuel ratio for stage two 2.65 2.66 - 

14 Stage one ISP 291.3 296.3 s 

15 Stage two ISP 303 306.4 s 

16 Stage one flight time 130 128.2 s 

17 Stage two flight time 330 398.8 s 

Conclusion  

Space transportation systems exemplify highly 

integrated systems that suffer from high levels of 

computation efforts during the design process. The 

elemental design philosophies for these systems 

need fundamental changes; each needs to move 

from a conventional design approach toward a 

completely integrated approach focused on the 

system design  

problem. This paper illustrates MDO’s successful 

application to a STS design problem. A surrogate 
based multidisciplinary design optimization 

framework was applied to conceptual studies of 

the STS in order to improve the mass and 

performance capabilities that can fulfil customer 

and mission requirements. Improving the mass 

capability means the increasing payload mass 

capability that can be transferred by the upper 

stage and also improving the performance 

capability means increasing the final velocity that 

can be achieved. Conceptual design of the 

mentioned system was performed by collaboration 

of several different analysis modules. The results 

of this investigation show that, in the MBO, CPU 

time and function calls are lower than using 

conventional optimization methods. Furthermore, 

the presented architecture could potentially 

mitigate some of the difficulties that arise at later 

stages of the STS design process, and reduce 

design complexities. In this article, engineering-

level analysis codes were used in the conceptual 

design phase, which can be replaced by high 

fidelity analysis modules (such as three 

dimensional CFD or FEA codes) with more 

capabilities in the detailed design phase. The 

proposed design and optimization methodology 

provides designers with an efficient and powerful 

approach in computation during designing space 

transportation systems and can also be developed 

for more complex industrial design problems with 

comparable characteristics. 
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