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Development of a Novel Method in TRMC for a
Binary Gas Flow Inside a Rotating Cylinder

A. A. Ganjaeil, S. S. Nourazar?, Sh. Navardi® and S. M. Hosseini’

A new approach to calculating the azially symmetric binary gas flow is
proposed. Dalton’s law for partial pressures contributed to by each species
of a binary gas mizture (argon and helium) is incorporated into numerical
simulation of rarefied azially symmetric flow inside a rotating cylinder using the
time relaxed Monte-Carlo (TRMC) scheme, and the direct simulation Monte-
Carlo (DSMC) method. The results of the flow simulations are compared
with the analytical solution and those obtained by Bird, (1994). Such results
show better agreements than Bird’s in comparison with the analytical solutions.
Howewver, the results of the flow simulations using the TRMC scheme show
better agreement than those obtained using the DSMC method when compared

with the analytical solutions.

NOMENCLATURE

The velocity probability distribution
functions of the molecule of the species
p having a velocity of v.

The velocity probability distribution
functions of the molecule of the species
p having a velocity of v;.

The post-collision velocity probability
distribution functions of the molecule
of the species p having a velocity of v.

The post-collision velocity probability
distribution functions of the molecule
of the species p having a velocity of v;.

The mass density distribution function.
The Boltzmann constant.

The molecular weight.

The Maxwellian velocity distribution.
Mass of a molecule of gas.

Diameter of a molecule of gas.
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Reduced mass.

The number density of molecules.
The total number of molecules.
The radial distance.

The cylinder radius.

The absolute temperature.
Velocity of a class of molecules.
The mean macroscopic velocity.
Thermal velocity.

The mean velocity of species i.
Translation temperature.

The post collision velocity.

The Molar Fraction.

The Knudsen number.

The mean collision frequency for
molecules having the velocity V.

Collisional cross section of molecules.
Density of gas.

Temperature exponent of the coefficient
viscosity.

The angular velocity.
Planar angle.

The angle in the spherical coordinates.
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INTRODUCTION

In the gas flow problems, where the length scale of
the system is comparable to the mean free path of
molecules in the gas flow, the concept of the continuum
is no more valid, with Knudsen number greater than
0.1, Bird, (1994). In this case, the simulation is done
using the Direct Simulation Monte-Carlo (DSMC) or
the Collisional Boltzmann Equation (CBE) methods,
Hockney et.al., (1981) and Nanbu, (1986). In most
cases, the direct solution of the CBE is impracticable
due to the huge number of molecules; however, most
of the time the implementation of the DSMC is more
practicable. Thus far, a class of Monte-Carlo method
has been used to simulate the rarefied gas dynamic
problems. The rarefied hypersonic flow is solved using
the DSMC method by Bird, (1994). The comparison
between the Navier-Stokes and the DSMC methods
for the simulation of the cicumnuclear coma is done
by Crifo et.al. (2002). The simulation of the rarefied
gas flow through circular tube of finite length in the
transitional regime at both low Knudsen number and
high Knudsen number is done using the DSMC method
by Shinagawa et.al., (2002). Recently Bottoni, (2004)
used the molecular approach based upon a Monte-
Carlo simulation for sodium vapor flow of mono-atomic
molecules in liquid metal fast breeder reactor bundle.
Simulation of flows like recirculation flow problems
or near continuum flows are still expensive due to
the particular nature of the DSMC method (Myong,
2004). However, Pareschi et.al., (1999) proposed
a modification to the DSMC method to circumvent
this problem. Pareschi et.al., (2001) used the time
relaxed Mounte-Carlo (TRMC) method with the wild
sum expansion (Wild, 1951) to approximate the non
negative function describing the time evolution of the
distribution function of particles. However, the optimal
choice of the coefficients in the Wild sum expansion for
the distribution function of particles is left as an open
problem. Pareschi et.al., (2005) numerically simulated
the Boltzmann equation for a two-dimensional gas
dynamic flow around an obstacle using the TRMC
method. Their simulation showed improvement over
the DSMC method in terms of computational efficiency.
Nourazar et.al., (2005), compared the simulation of
the Navier-Stokes and the Boltzmann equations of the
axially symmetric compressible flow past a flat nosed
cylinder at high velocity and low pressure with shock
wave using the Monte-Carlo method. The results of
the two simulations are compared in terms of different
Knudsen numbers.

Purpose of the Present Work

In the simulation of rarefied gas dynamic problems,
when the Knudsen number is small, collisions occur
at a fast rate; therefore, a kinetic treatment (DSMC)
of the problem is extremely expensive due to the

required small time-step. Since the ratio of time scales
between macroscopic and microscopic effects is large
enough; therefore, reaching the stationary results of
flow characteristics may almost be impossible.

On the other hand, the TRMC schemes allow the
use of larger time-steps than those required by the
DSMC method; thereby allowing one to achieve the
stationary results of flow properties in a comparatively
shorter computational time. To our knowledge, no
researcher has so far tried to incorporate the new
idea of using the Dalton’s law in the simulation of
axially symmetric binary gas flow when implementing
the TRMC scheme. In the present work, we intend
to simulate the flow properties of binary gas mixture
(argon and helium) inside a rotating cylinder using the
TRMC scheme and the DSMC method. The results of
the simulations using the two methods are compared
with the analytical solutions and those obtained by
Bird 1994 for the same case study problem. In the
simulation using the DSMC, we follow exactly the same
procedures described in Bird 1994, and in the one using
the TRMC, we follow exactly the same procedures
described in Pareschi et.al. 2005.

Description of the Case Study Problem

The cylinder rotates at the tangential velocity of 1000
meter/second and the radius of the cylinder is 1 meter.
The gas mixture inside the cylinder comprises of 50%
argon and 50% helium; the initial temperature of the
gas mixture inside the rotating cylinder is 200 Kelvin
and the initial pressure of the gas mixture inside the
cylinder is 2.76 Pascal absolute. These data are the
same as those presented in Bird 1994.

MATHEMATICAL FORMULATIONS
The Boltzmann Equation
The Boltzmann equation for the temporal evolution of
particles velocity distribution function for species p is
written as (Bird, 1994):

7] 7] -
ot (npfp) + VP’E (npfp) = % Z Q (npfp.ngfe) (1)

q=1

In Eq. (1), » is the density of molecules of species, f is
the probability distribution function of the molecules
of species having velocity V, fi is the probability
distribution function of the molecules of species having
velocity V1, € is Knudsen number which is equal to the
ratio of A, the mean free path between collisions, to
the characteristic length L. The subscripts p and g
represent the particular species.

The bilinear collisional operator @ (n,fp,nqfy),
which describes the binary collisions of the molecules
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is given by:

Q (npfp,nqfo) =

+oo 47

Z / /npnq f flq fpflq] (|Vipgl . ) dQdVa -

=1"4 0
(2)

where, V..~ is the relative velocity between the
molecules of species p and species ¢, and  is a vector
of the unitary sphere. The kernel ¢ is a non-negative
function which is described as (Pareschi, 2005):

T (|Vepg| s Q2) = bo (0) [Vipg|™ - (3)

where, 0 is the scattering angle between V, and V. 2.
The Variable Hard Sphere (VHS) (Bird, 1994) model
is often used in the numerical simulation of rarefied
gases, where, b,(0) = ¢C with C' a positive constant
and a = [. The value of C is equal to (Bird, 1994),
C =0y

Substituting Eq. (3) into Eq. (2), we get:

m | =

Q (npfp.nqfe) =
“+oo 4n

/ /npnqopqupq I:fp‘ffq - fpflq] dQ dVy,- (4)
co 0

1_

8

q

Substituting the bilinear collisional operator (Eq. (4))
into Eq. (1), the Boltzmann equation is written as:

d 0 1

ot (npfp) + Vp~a_ (npfp) = gQ (npfp»anq) =

+oo 47

Z /npan'pq rpq f flq fpflq] dequ (5)
0

g=1_"

In Eq. (3), n is the density of molecules of species, f is
the probability distribution function of the molecules
of species having velocity V, fi is the distribution
function of the molecules of species having velocity Vi,
f*is the post-collision probability distribution function
of the molecules of species having velocity V' and f;
is the post-collision probability distribution function
of the molecules of species having velocity V. The
subscripts p and g represent the particular species.

The DSMC and TRMC Schemes

In the binary gas mixture flow with two different
species p and ¢, the Boltzmann equation can be sepa-
rately written for the species in the following manner:

9

0
ot (npfp) + Vp~5 (npfp) =

%Q (npfp7 npfp) + %Q (npfp7 anq) ’ (6)

69

In the present work, the Dalton law is used to
calculate the pressure of the mixture, which is calcu-
lated as P = P, + F,, where P, is the partial pressure
of the species p, and F, is the partial pressure of the
species ¢. The density of the mixture is calculated as
P =Y 1o Pur T Y Pu.» Where p,, is the mixture density,
y,, is the molar fraction of argon, p,, is the density
of argon, y,,. is the molar fraction of helium and p,,_
is the density of helium. First, we assume that only
the argon gas exists inside the rotating cylinder, and
the flow is simulated using the TRMC and the DSMC
methods. Second, we assume that only the helium gas
exists inside the rotating cylinder, and that the flow is
simulated using the TRMC and the DSMC methods.
In both cases, the effect of collisions of molecules of
argon and the effect of collisions of molecules of helium
are considered separately, @ (n,fp, nqfy) = 0.

2 (npfp) +V; 3 (npfp) = %Q (npfpvnpfp) ’ (7)

ot P or
We split Eq. (7) (Gabetta, et.al., 1997) into equation
for the effect of collision, aa (n, fp) = 0, and equa-
tion for the effect of convection, @ (npfp,npfp) = 0.
The equation for the effect of collision is written as
(Pareschi, 2005):

2 ) = -

Q (npfpvnpfp) (8)
For simplicity, we omit the index and replace n, f, with
f, where f is the mass density function of the molecules
of species having velocity V. Then Eq. (8) is rewritable
as:

9

1

and the collision term is written as:

éQ(f,f) = +oo7rovr [Ffi = ff]dQdVy
+ocdr o oot
__Zoo/avrf frdQdv, f_ZOO/aVrfldevl
= LPGN - r )] (10)
whete, j1 (V)= [ [¥"oV, fldﬂvlzzfﬂoVTdQJrfoo fudVi=

— o0
k p/m is the mean collision frequency for the molecules
having velocity V', p is the density of the gas, m is the
mass of a molecule of the gas, x is a molecular constant

Ar “+oo
k = [oV,dQ and p/m = [ fidVy (Wild, 1951). In
0 —o0
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the special case in which ¢V, is independent of V,
(Maxwellian molecules), we have:

vy =p="=F (1)
Plugging Eqgs. 10 and 11 into Eq. 9:
af 1 1 _ ’
2= QU =P - ] (12)

The first order time discretization of Eq. 12 is written
as:

n+l _ £n
%ZE[PU”,JC”)—MC”]
I

The probabilistic interpretation of Eq. 13 is the fol-
lowing. In order for a particle to be sampled from
f7L, a particle is sampled from f”, with the prob-
ability of (1 — p At/e), and a particle is sampled from
P(f™, f™) /u, with the probability of uAt/e. Tt is to
be noted that the above probabilistic interpretation
fails if the ratio of pAt/e is too large because the
coefficient of f™ on the right hand side may become
negative. This means that in the stiff region (where
the Knudsen number is small ¢ << [), the time
step becomes extremely small; therefore, the method
becomes almost unstable near the fluid regime (Nanbu
1980 and Babovsky 1986).

To circumvent the problem, the new independent
variable 7 and new dependent variable F(V,7) is
defined as:

= (1= el (14)

F(V,7) = f(V,t)er'/=. (15)
Therefore, Eq. (12) is rewritten as:

Z—f = %P(F,F)

F(V,m=0)=f(V,0)- (16)
Eq. (16) is Cauchy problem, and it has a power series
solution such as follows (Gabetta et.al. 1997):

FV.r)=Y 1" (V)
k=0

Jre=o (V) = f(V,0)- (17)
Substituting Eq. (17) in Eq. (16), we have:

OF <, i - k

5 = kz::okr fr = ;)(kﬂ)r frs1

P(F,F)=P (Zrkfk,z:rkfk)~ (18)
k=0 k=0

Expanding the summation terms gives us:

((99—1: = fi+2rfo+ 3T fs +ATPfu+ -

P(F,F)=P(fo+tfi+7fat -,
fortfi+mfat-) - (19)

Plugging Eq. (19) into Eq. (16):
fit2rfo+ 37 fa + 4T3y + - -

:%P(fo-l-T]ﬁ +7'2f2+“’,f()+7'f1+7'2f2+‘“>

=%uwhmﬂ+ﬂ%mjn+rpqhm)

+72P (fo, f2) + T°P (f2, fo) +7°P (f1, f1) + ]
=ﬂmmmwwmmm+w@%ﬁ)

+9PULﬁ%%~]=%UWhJﬁ+%Pumﬁ)

+72 (2P (fo, fo) + P (fi, f)} + -]+ (20)

Equating the coeflicients of corresponding powers of 7,
we can find the value of f to be:

fi = <P (fo. fo).
I

fo= 2P (for f1),
I

fz= % {%P(fo,fz) + %P(fl,fl)}’

(21)

Therefore, the function f is found by the recurrence
formula to be:
k

! Z%P(fh,fk_h), k=0,1,...- (22)
h=0

fern=q 2

Converting Eq. (17) into the original variables, we
obtain the following formula representing the solution
to the Cauchy problem 9:

ad k
oty =eme S (1= emrle) (o), (23)

k=0

A class of numerical schemes based on a suitable
truncation for m > 1 of Eq. (23) is derived (Gabetta
et.al., 1997):

m

flot)y=ert/sy" (1 - e_“t/e)]c fr (v)

k=0

+(1- e—»“f/f)m+1 M) (24)
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where f* = f(nAt), and At is the time step. The
quantity M in Eq. (24) is the asymptotic solution to
the equation, and is called Maxwellian.

Eq. (24) can be generalized using different weight
functions including the influence of the higher order
coeflicients. In general, the TRMC scheme is written
as:

frtt = Z Acfi + A M- (25)
k=0

where, the functions fi are given by Eq. (22) and the
weight functions A (7) are non-negative functions that
satisfy the consistency, conservation and the asymp-
totic preservation conditions (Gabetta ef.al. 1997). In
this simulation, the first order TRMC of Eq. (25) as
fn+1 = AofJL + Alfl + AzM is used.

ANALYTICAL SOLUTIONS
The energy E of a particle in an axially symmetric gas
mixture flow inside a rotating cylinder is given as (Kuo,
L. Y., 1990),

1 1
E(r)= §Iw2 = §m7’2w2. (26)

The rotational effect is the same as that of the addi-
tional external field acting on the system, and may be
written as:

U(r)= —%mr2w2. (27)

Using the Boltzmann distribution for the particle num-
ber density and substituting for U(r) from Eq. (27), we
have:

n(r) = Aexp (— Uk(jf)) ~ Aexp (%) o (28)

where the normalization factor A can be determined
by N = [n(r)dV giving:

2 27 U
N = //O Aexp (— k(If)) rdrdf
0

R
27 ——
—//0 Aexp( SET )rdrd@, (29)
0

71
Then for A, we can have:
A= Lme? (exp (mﬁ;ﬂ) - 1) - (31)
Therefore:
n(r) = Nmw?  ©XP (@Z?Q) (32)

2RTL exp (2577 — 1
where, N is the total number of molecules, m is the
mass of a molecule of gas, w is the angular velocity, k is
the Boltzmann constant, T' is the absolute temperature,
L is the length of the cylinder, R is the cylinder radius
and 7 is the radial distance.

BOUNDARY AND INITIAL CONDITIONS

Boundary conditions

At the boundary where the axis of symmetry exists, the
rule of specular reflection is considered. The specular
reflection rule is implemented for molecules at the
solid surface boundary with normal velocity to the
solid boundary being reversed and those with paral-
lel velocity to the solid surface boundary remaining
unchanged. At the top and bottom boundary of the
cylinder the rule of specular reflection, and at the wall
of the cylinder the rule of diffusion reflection apply. The
diffuse reflection rule is implemented for molecules at
the solid surface boundary with a velocity component
equal to the tangential velocity at the cylinder wall
equal to 1000 meter /second, and the other component
of the velocity is equal to the most probable velocity
according to the Maxwellian equilibrium distribution.
Therefore, the resultant velocity is equal to the velocity
obtained on the basis of the kinetic theory of gases.
In the diffuse reflection rule, the temperature of the
reflected molecule and the temperature of the solid
wall boundary need to be equal and the velocities of
the reflected molecules are distributed according to
Maxwellian equilibrium distribution.

Initial conditions

The initial values of the gas mixture pressure and the
temperature are 2.76 Pascal absolute and 200 Kelvin
respectively. The molar concentrations of the gas
mixture inside the cylinder consist of 50% argon and
50% helium. The initial velocities of the molecules are
obtained based on the kinetic theory.

THE NUMERICAL PROCEDURES
In the simulation of the problem using the DSMC
method, two grid systems are chosen. The first grid
system (Figure 1) is used to calculate the averaging
of the flow properties. This grid system is chosen to
be fine enough in order to increase our computational
accuracy. The grid system is refined until the variations
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of the flow properties are not substantial (the variations
of the flow properties are less than 2%). The second
grid system is chosen to be very fine (the mesh size
is equal to 0.2 times the mean free path of the
molecules); therefore, the collision of the molecules
are controlled within each mesh accurately. Our grid
system consists of 5 times 100 meshes, and the total
number of model molecules is 35700. The number
of real molecules is obtained based on the density of
gas and the Avogadro’s number, where each model
molecule consists of 5.49735%10% real molecules. In
the TRMC scheme, the same grid system (5 times 100)
and the same number of model molecules, 7.e. 35700,
are used. The number of real molecules is obtained
based on the density of gas and the Avogadro’s number.
For the axially symmetric flows, the distribution of
the modeled molecules is linearly proportional to the
radial distance. The volume of the mesh far from the
axis of symmetry is much larger than the volume of
the mesh close to the axis of symmetry. Therefore,
the number of the modeled molecules far from the
axis of symmetry is much greater than the number
of modeled molecules close to the axis of symmetry.
This leads to the uniformity of density in the radial
direction. The size of the mesh is in order of the
mean free path, and the time step in our simulation
is chosen to be 0.2 times the mean collision time of
Bird, 1994. The molecules are distributed in the mesh
system according to the normal distribution. The
initial velocity of the molecules is chosen based on the
kinetic theory of gases. The direction of velocity of the
molecules is chosen randomly based on the equilibrium
Maxwellian distribution. We then start to advance
with time, and the new position of the molecules is
designated. The collisions of the model molecules
are done based on the variable hard sphere (VHS)
model proposed by Bird, 1994. We then continue
advancing in time until the statistical fluctuations of
the flow properties is minimum. In the simulation
of gas mixture (argon and helium) flow inside the
high speed rotating cylinder, the gas mixture pressure
inside the cylinder is initially 2.76 Pascal absolute,
the radius of the cylinder is 1 meter, the tangential
velocity at the cylinder wall is 1000 meter/second,
the gas mixture inside the cylinder consists of 50%
argon and 50% helium, and the temperature of the
gas mixture inside the cylinder is 200 Kelvin. The
total number of 35700 model molecules is considered
to be distributed linearly along the radial coordinates.

I

e

o
i
T

S

Radius (m)

Axial coordinate(m)

Figure 1. The structure of mesh system for the cylinder
of radius 1meter and height of 0.1 meter.

The time-step of the simulation is chosen to be 1076
second and the simulation is done until 25.7 seconds of
real time (1280000 iterations) in DSMC method. In
the TRMC scheme, the time-step of the simulation
is chosen to be 5¥107% second and the simulation is
done until 25.7 seconds of real time (256000 iterations).
The calculations are performed by the IBM compatible
personal computer with a 2.8 GHz CPU and a 512 MB
RAM.

Algorithm of the Direct Simulation Monte
Carlo Method (DSMC)

DSMC Algorithm (for the VHS collision model
molecules)

o T .;=273K

o dp,, =233x1071 for He
=4.17 x 10710, for Ar

o
mym
_ » My
d mr_m-‘rm
p q

qref

k= 1.380658 x 10~23 jK_l
o At=1x 1079 Sec

Distribute the initial locations of the particles ac-
cording to the uniform distribution.

for ny =1 to nyos:

1. Given {v/,i=1, ..,N}.

2. Define the local Knudsen number ().
3. Calculate

dpg = (dref)pq
[{Qk (Tref)pq/ (mr lo; — Uj|2) }'qu—1/2 ;

I'(5/2 = )] -

4. Compute an  upper bound & =
max ((r/4)d3, (Jv; —v;]))  for  the  cross
section, & is updated in each collision.

5. Set u = 475.

6. Set N, = Iround (uNAt/(2¢)).

7. Select 2N, dummy collision pairs (4, 7) uniformly
among all possible pairs, and for those.

8. Compute the relative cross section,
oi=(m/4) d3g Vi — ;).

9. Generate uniform random numbers (Rand).

10. if Rand < 0;;/a:

(a) Perform the collision between i and j,
and compute the post-collision veloci-
ties v and v} according to the colli-
sional law.

(b) Generate two uniform random numbers

(1, G
(¢) Set a=cos™!(26 —1),8 = 2rné.
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(d) Set ¢ = (cos Bsina sinfFsina cosa)’
(e) S§t vf = %(w + ;) + % lv; — ;] @,

vi =5 (vi +v5) = g vi — v ¢
f) Set o™t =pF, 7T =y,
)

[ i Yg 7
else
n+l _ n+1l _
(g) Set v =of, v =0}

(h) Set v =P for the N;— 2N, particles
that have not been selected.
e End for
e Calculate macroscopic properties:
e macroscopic flow velocity:
Vo = % (1mpnpTp + Mgngly),
e density: p=n.m,
e thermal Velocity: v; =7; — 7p.

.7 = 1 2 2
e temperature: I, = zi— (NpMpv,” +ngmqv,” ).

! !
o pressure: P =nkT, =% (npmpvp2 + nqmqvf).

During each step, all the other N; — 2N, particle
velocities remain unchanged. Here, by Iround(x), we
denote a suitable integer rounding of a positive real

number z. In our algorithm, we choose:
[#] with probability [z]+1— =
[#] + 1 with probability = — [«]

Iround(x) = {

Algorithm of the Time Relaxed Monte Carlo
Method (TRMC)

TRMC Algorithm. (first order TRMC scheme for the
VHS collision model molecules).

o T..;=27T3K

o dp,., =233x1071° for He

® dg.,, =417X 10719, for Ar

o k= 1380658 x 10~ jK~1
o At=15x1075 Sec

e Distribute the initial locations of the particles ac-
cording to the uniform distribution.

e Compute the initial velocity of the particles, {v?,i =
1,..., N} by sampling them from the initial density
fo.

o formn, =1 1t0 Ny
1. Given {v]',1=1, .. ,N}.

2. Define the local Knudsen number ().
3. Calculate

dp = (dyey)
[{Qk (Trer)/ (mr lv; — Uj|2) }7—1/2/

I'(5/2-7)].

e N

START

Distribute the initial locations of the particles

according to the uniform distribution

|

Define {v,,n =1,...,N} ‘

l

Calculate #7¢% = !¢ L . At }‘7

'

Perform boundry Conditions ‘

|

For I=1 to Nrotar

{

Define the local Knudsen number |

]

Calculate the effective diameter of molecule |

|

Compute an upper bound o;; |

!

Calculate the number of collision N, |

|
Y

Select 2N, dummy collision pairs uniformly
among all possible pairs, and for those

{

Generate uniform random numbers

if o <o/ogy

Perform the collision between two selected
particles

!

Calculate macroscopic properties |

No

Perform steady state

Figure 2. The Flowchart of DSMC Scheme.

Compute an  upper bound &
max ((r/4)d3 (lv; —v;]))  for  the
section, & is updated in each collision.
Set 7 =1 —exp (paAt/e).

Compute Ay (1) = 72 — 73, As(7) = 7% — 74,

Set N, = Iround (N Ay /2).

73

Cross

Select N, dummy collision pairs (4, 7) uniformly

among all possible pairs, and for those.

Compute the relative cross section,
oi=(7[4) &3y |vi — v;].
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10. Generate uniform random numbers (Rand).
11. if Rand < 0y;/a:

(a) Perform the collision between 4 and j,
and compute the post-collision veloci-
ties v; and v} according to the colli-
sional law.

(b) Generate two uniform random numbers

Cla C2~
(c) Set a =cos™! (26 —1),8 = 2n&s.
(d) Set ¢ = (cosfBsina sinfBsina cosa)’
(e) Set vjlz %(Ui"‘@j%"‘%lvi—’l]jl(b,
vi =3 (Vi) = g lvi — vl ¢
(f) Set v} =i, vt =0
else

(g) Set v =P, U;H_l =v}.

12. Set Ny = Iround(N As)

13. Select Njs particles among those that have not
collided, and compute their mean momentum
and energy.

14. Sample Njs particles from the Maxwellian with
the above momentum and energy, and replace
the N selected particles with the sampled ones.

15. Set UZL-H = v} for all the N —2N,— N, particles
that have not been selected.

e End for
e Calculate macroscopic properties:

e macroscopic flow velocity:
1 _ s
Yo =5 (mpnpp + Mmgngdy),
e density: p =n.m,

e thermal Velocity: v; =7; — Tp.

’ ’
e temperature: T, = 53— (npmpvp2 + nqmqvf).

I !
e pressure: P=nkT, =3 (npmpvpz + nqmqvf).

THE NUMBER OF MODEL MOLECULES
DEPENDENCY TEST
The number of model molecules dependency test is
done using more model molecules in each mesh. The
simulation is done using 35700 model molecules in the
grid system; however, in the number of model molecules
dependency test the number of model molecules is
increased to 57120 model molecules in our grid system.
The results of simulation of flow characteristics for the
two cases (35700 model molecules and 57120 model
molecules in the grid system) at 4 seconds of real time
of flow simulation are obtained and compared with
each other. Figure 4, Figure 5, Figure 6, and Figure
7 show the number of molecules dependency test for
density, number density, temperature and swirl velocity
respectively. Figure 4 shows the number of model

START

Distribute the initial locations of the particles
according to the uniform distribution

|

‘ Define {v,,n =1,...,N} ‘

v
| Calculate z7¢% = 2% 4+ 4 At |‘—
| Perform boundry Conditions |

| For I=1 to Npoiar |‘—
'

| Define the local Knudsen number |

!

| Calculate the effective diameter of molecule |

!

| Compute an upper bound o;; |

!

| Calculate the number of collision N, |

!

Select 2N, dummy collision pairs uniformly
among all possible pairs, and for those

!

Generate uniform random numbers

Perform the collision between two selected
particles

!

| Jalculate Nz |

|

Select Njps particles among those that have not
collided, and compute their mean momentum
and energy

!

Sample Njs particles from the Maxwellian with
the above momentum and energy, and replace
the Nz selected particles with the sampled
ones.

!

Calculate macroscopic properties

Perform steady state No

Figure 3. The Flowchart of DSMC Scheme.

molecules dependency test for the mixture density. The
maximum discrepancy between the results of simula-
tion of number of model molecules dependency test for
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Figure 4. The number of molecules dependency test for
density.
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Figure 5. The number of molecules dependency test for
number density.

the mixture density for the two cases (35700 model
molecules and 57120 model molecules in the grid sys-
tem) is less than 4% at 0.625 meter of radial distance in-
side the cylinder. Figure 5 shows the number of model
molecules dependency test for number densities of
argon and helium. The maximum discrepancy between
the results of simulation of number of model molecules
dependency test for the number density of argon and
helium for the two cases (35700 model molecules and
57120 model molecules in the grid system) are less
than 7.3% at 0.625 meter of radial distance inside
the cylinder and less than 1.35% at 0.1 meter of the
radial distance inside the cylinder respectively. Figure
6 shows the number of model molecules dependency
test for the temperature. The maximum discrepancy
between the results of simulation of number of model
molecules dependency test for the temperature for the
two cases (35700 model molecules and 57120 model
molecules in the grid system) is less than 0.66% at 0.75

meter of radial distance inside the cylinder. Figure

75

7 shows the number of model molecules dependency
test for the swirl velocity. The maximum discrepancy
between the results of simulation of number of model
molecules dependency test for the swirl velocity for the
two cases (35700 model molecules and 57120 model
molecules in the grid system) is less than 4.37% at 0.625
meter of radial distance inside the cylinder.

THE RESONANCE CONDITION TEST
The resonance condition is studied for the rotating
cylinder. The natural frequencies of the rotating
cylinder are determined. Here are the results of
simulation for the modal natural frequencies using the
ANSYS software shown in Table 1 below. For the sake
of simplicity, we just assume a three degree of freedom
model in our simulation. The matrix form the three

degree of freedom equation of the rotating cylinder is
as follows:

MX+EKX=0 (33)

*  No. of Model Molecules : 35700
+  No. of Model Molecules : 57120
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Figure 6. The number of molecules dependency test for
Temperature.
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Figure 7. The number of molecules dependency test for
Swirl Velocity.
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Figure 8. Comparison between the results of simulation
using the DSMC method, the TRMC scheme and the results
of Bird, 1994 for the variations of the swirl velocity along
the radial coordinates.
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Figure 9. Comparison between the results of simulation
using the DSMC method, the TRMC scheme and the results
of Bird, 1994 for the variations of the swirl velocity along the
radial coordinates and the time evolution of the variations
of swirl velocity along the radial coordinates from the 0.2
second of real time (10000 iterations) up to 25.7 seconds of
real time (1280000 iterations) respectively.

where

I o
M=|(%-p) (z"‘?) (g‘;zj) (34)
0 (F-#) (B+%)
5 —4 1
%
k=g |4 6 4 (35)

and
K = 1140
rad
l=1m
m=0971 Kg
I=121714 x 1072 K g.m? (36)

DISCUSSION
Figure 10 shows the comparison of the results of simula-
tions using the DSMC method and the TRMC scheme
with the results of Bird, 1994 for the variations of the
swirl velocity along the radial coordinates. Comparison
of our results of simulation using the DSMC method
for the swirl velocity with the results of Bird, 1994
shows good agreement at 0.2 second of real time (10000
iterations); however, comparisons of our results of
simulations using the DSMC method at 25.7 seconds
of real time (1280000 iterations) and the results of
simulation using the TRMC scheme at 25.7 seconds
of real time (256000 iterations) with the results of
Bird, 1994 show high discrepancies. The discrepancies
are due to the lack of sufficient real time (number of
iterations) in the calculation of Bird, 1994 simulation.
In the Bird, 1994 simulation the DSMC method is
used; however, the larger time-steps are not allowed
(Pareschi, et al, 2003); therefore, one is not able to
reach the stationary flow simulation. Comparisons of
our results of simulation using the DSMC method at
25.7 seconds of real time (1280000 iterations) for the
swirl velocity with the results of simulation using the

Table 1. Shows the modal natural frequencies of the rotor
with three degree of freedom without and with rotational
speed.

Mode of Natural Frequency[Hz] Natural Frequency[Hz]
Natural Frequency without Rotation with Rotation(60000.rpm)
1 115 140
2 272 476
3 309 976
4 426 1000
5 442 1367
6 633 1375
7 760 1392
8 765 1407
9 782 1487
10 820 1598
11 889 1632
12 911 1851
13 931 2139
14 952 2179
15 995 2268
16 - 2484
17 - 2639
18 - 2641
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Figure 10. Comparison between the results of simulation
using the DSMC method, the TRMC scheme and the results
of Bird, 1994 for the variations of the temperature along the
radial coordinates.
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Figure 11. Comparison between the results of simulation
using the DSMC method, the TRMC scheme and the results
of Bird, 1994 for the variations of the temperature along the
radial coordinates and the time evolution of the variations
of temperature along the radial coordinates from the 0.25
second of real time (12500 iterations) up to 25.7 seconds of
real time (1280000 iterations).

TRMC scheme at 25.7 seconds of real time (256000
iterations) show good agreements. Figure 9 shows the
time evolution of the variations of swirl velocity along
the radial coordinates for different iterations (10000 to
1280000 iterations). Figure 10 shows a comparison of
the results of simulations using the DSMC method and
the TRMC scheme with the results of Bird, 1994 in
the variations of the gas mixture (argon and helium)
temperature along the radial coordinates. Comparison
of the results of simulation using the DSMC method
for the gas mixture (argon and helium) temperature
with the results of Bird 1994 shows good agreements
at 0.2 second of real time (10000 iterations); however,
comparisons of our results of simulations using the
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DSMC method at 25.7 seconds of real time (1280000
iterations) and the results of simulation using the
TRMC scheme at 25.7 seconds of real time (256000
iterations) with the results of Bird, 1994 show high
discrepancies. The discrepancies are due to lack of
sufficient real time computing (number of iterations)
in the Bird, 1994 calculations. Although in those
calculations where the DSMC method is used one is
unable to choose larger time steps, in the simulation
using the TRMC scheme one is allowed to choose
larger time-steps (see Pareschi et al, 2005); therefore,
reaching larger real time for calculations. Comparisons
of our results of simulation using the DSMC method
at 25.7 seconds of real time (1280000 iterations) for
the gas mixture (argon and helium) temperature with
the results of simulation using the TRMC scheme at
25.7 seconds of real time (256000 iterations) show good
agreements. Figure 11 shows the time evolution of
the variations of the gas mixture (argon and helium)
temperature along the radial coordinates for different
iterations (10000 to 1280000 iterations). Figure 12
shows the comparison of the results of simulations
using the DSMC method with the TRMC scheme for
the variations of the gas mixture (argon and helium)
pressure along the radial coordinates. Figure 12 shows
that at 25.7 seconds of real time (1280000 iterations)
the values of pressure around the wall of the cylinder
are approximately 18 times bigger than the values of
pressure around the center of the cylinder.

Comparisons of Number Density Results with
the Analytical Solution
The analytical solution of Kuo (1990) is only used here
as a reference to render comparison of the results of the
present simulation. The solution of Kuo (1990) is based
on the assumption that the flow is in equilibrium. Here
in the present simulation one assumes that the results
of our simulation reach the equilibrium condition as
well. However, this assumption is not completely valid.
Therefore, the analytical solution of Kuo (1990) can
only be used as a reference and not as an absolute
source to judge the accuracy of the TRMC scheme.
Figure 13, 14 and 15 show the comparisons of
the DSMC method, the TRMC scheme and the results
of Bird, 1994 with the analytical solution for the
variations of the density of gas mixture, the number
density of helium and the number density of argon
along the radial coordinate respectively. Comparison
of our results of simulation for the density of gas
mixture (Figure 13) with the analytical solution shows
reasonable agreement and the agreement is pronounced
for the radial distance of r > 0.3m; however, the
comparison of our results of simulation using the
DSMC and the TRMC with the analytical solution
shows better agreement than the results of Bird, 1994
(Figure 13). Comparison of our results of simulation
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Figure 12. Comparison between the results of simulations
using the DSMC method, the TRMC scheme for the
variations of the gas mixture (argon and helium) pressure
along the radial coordinates.
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Figure 13. Comparison between the DSMC scheme,

the TRMC scheme and the results of Bird 1994 with the
analytical solution for the variations of the number density
of helium.

for the number density of helium (Figure 14) with
the analytical solution shows a reasonable agreement,
which is pronounced for the radial distance of r > 0.5
m; however, comparison of the results of simulation of
Bird, 1994 in the number density of helium (Figure 14)
with the analytical solution shows high discrepancies.
The discrepancies of Bird, 1994 results are due to the
lack of sufficient real time in the simulation using the
DSMC method. In the simulation using the DSMC
method, one is not allowed to choose larger time-steps;
therefore, reaching the larger real time is very difficult.
However, in the simulation using the TRMC scheme,
one is allowed to choose larger time-steps in order to
reach larger real time. Comparison of our results of
simulation in the number density of argon (Figure 15)
with the analytical solution shows better agreement
than its counterpent in Bird, 1994.

CONCLUSION

The comparison of the results of simulation using
the DSMC method with the results of the simulation
using the TRMC scheme for the swirl velocity and the
temperature shows good agreement. However, similar
comparisons of Bird 1994 with the analytical solution
demonstrates high discrepancies. The comparisons of
the results of simulations using the DSMC method
and the TRMC scheme with the analytical solution
for the density, number density of helium and number
density of argon also show good agreement. However,
again the same comparisons using Bird 1994 show
high discrepancies. The conclusions are summarized
as follows:

1. Due to the required small time-steps in the DSMC
simulations, the discrepancies of the results using
the DSMC method is pronounced in comparison
with the results of the simulations using the TRMC

scheme.
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Figure 14. Comparison between the DSMC scheme,

the TRMC scheme and the results of Bird 1994 with the
analytical solution for the variations of the number density
of argon.

———— DSMC(Bird, 1994)

F DSMC (25.7s)
I ———— TRMC(25.7s)
I ——— Analytic
109 |
. C
g 107
c F
5 E
& N
u r
2 107}
E E
5 E
£ £
) -
<L
10'\3 -
10'\7 -
E. (A T S W IR S TR NN T SRR IR S |
0.2 04 06 08 1
Radius (m)
Figure 15. Comparison between the DSMC scheme,

the TRMC scheme and the results of Bird 1994 with the

analytical solution for the variations of the density.



Development of a Novel Method in TRMC

The comparisons of the results of simulations using
the TRMC scheme for the density and the number
density with the analytical solution show better
agreement than those obtained through DSMC
method.

Having larger time-steps in the simulation using
the TRMC scheme allows one to reach stationary
results for the flow characteristics in shorter time;
therefore, the results of the simulations using the
TRMC scheme show improvements over similar
results using the DSMC method. In our simulation,
there are two sources of approximation errors.
First, the approximation errors inherent in the
selection of larger time-step used in the TRMC
scheme. Second, the approximation errors due to
modeling the molecular collision, the VHS model,
used in the present work. These two sources of
approximation errors interact with each other. The
nature of the interaction of the two sources of
approximation errors is very complicated. However,
the results of our simulation in the present work
show that the approximation errors inherent in the
selection of larger time-steps in the TRMC scheme
counteract with the other sources of approximation
errors inherent in the simulation modeling such
as modeling of molecular collisions, i.e. the VHS
model, used in the present work. Therefore, the
results of the simulation using the TRMC scheme
show improvement over the results of simulation
using the DSMC method.
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