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Compressional Stability Behavior

of Composite Plates with Multiple
Through-the-Width Delaminations

M. Kharazi!, H. R. Ovesy’

In this paper, the compressive behavior of composite laminates with
multiple through-the-width delaminations is investigated analytically. The
analytical method is based on the CLPT theory, and its formulation is developed
on the basis of the Rayleigh-Ritz approximation technique to analyze the
buckling and post-buckling behavior of the delaminated laminates. The method
can handle both local buckling of the delaminated sublaminates and global
buckling of the whole plate. Also the three-dimensional finite element analysis
is performed using ANSYS5./ general purpose commercial software, and the
results are compared with those obtained by the analytical model. The agreement

between the results is very good.

INTRODUCTION
Fiber-reinforced composite materials have been in-
creasingly used over the past few decades in a va-
riety of applications in which a fairly high ratio of
stiffness/strength to weight is required. However,
these materials are prone to a wide range of defects
and damages that can cause significant reductions
in stiffness and strength. In particular, when the
laminated composites are subjected to compressive
loads, delamination becomes a constraint in the design
process. Various methods have been proposed for the
analysis of a plate that contains through-the-width de-
laminations. Chai et.al. have established an analytical
one-dimensional model for the analysis of delamination
buckling of beam-plate in 1981 [1]. Since then, the de-
lamination buckling of one-dimensional beam-plate has
been studied by several researchers. Bottega et.al. have
analyzed the buckling behavior of circular plates with a
circular delamination located in the center of the plate
under the assumption of axisymmetric deformation [2].
Shivakumar et.al. have studied the buckling behavior
of thin elliptical delamination using the Rayleigh-Ritz
and finite element method [3]. Anastasiadis et.al. have
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analysed the problem by simulating the contact of
the delamination regions through the application of
distributed springs of constant stiffness [4]. Davidson
has used the Rayeigh-Ritz method to determine the
load and strain at which delamination buckling occured
for a composite laminate containing a single elliptical
shape delamination [5]. Piao has used a consistent
shear deformation theory to analyse the beam-plate
delamination buckling [6].

Suemasu has studied the buckling behavior of de-
laminated composite laminates using classical laminate
plate theory and first order shear deformation theory
[7,8]. Adan et.al. have solved the governing differential
equation for beams with multiple through the width
delaminations to find the buckling load [9]. Wang et.al.
have used the spring simulation technique to determine
the local buckling load of delaminated beams and
plates [10]. They have then used the developed spring
simulated model to determine the strain energy release
rate of delaminated composite plates [11].  Shah-
wan et.al. have used the nonlinear spring distribution
between a thin plate which is bonded laterally to
a thick plate to analyse the buckling problem [12].
Sleight et.al. have compared the results for the buckling
loads of debonded sandwich panel under compression
obtained using spring distribution between face sheet
and core with the corresponding results obtained uti-
lizing FEM and Rayleigh-Ritz methods, each in a
separate experiment [13]. The buckling behavior of the
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laminated composites with two centrally through-the-
width delaminations has been analyzed by Shu [14].
In his study, the classical laminate theory has been
employed and the effects of the counstraint imposed
by the sublaminates to each other and to the base
laminate on the buckling behavior of the plate have
been investigated. Andrews et.al. have formulated a
technique utilizing the classical laminated plate theory
to study the elastic interaction of the multiple through
the width delaminations in laminated plates subject
to static out of plane loading while deforming in
cylindrical bending [15]. Kharazi et.al. have used the
spring simulation technique to analyse the buckling
of the laminates including bend-twist coupling effects
with multiple embedded delaminations [16]. In this
study, the minimization of the total potential energy
of the system has been used to obtain the buckling
load. Kharazi and Ovesy have investigated the com-
pressive behavior of composite laminates, 7.e. bucking
and post-buckling behavior, with through the width
delaminations by developing an analytical method
based on Rayleigh-Ritz approximation technique [17].
This method can handle both local buckling of the
delaminated sublaminate and global buckling of the
whole plate. It is noted that in the latter paper
(i.e. reference [17]) the behaviour of a laminate, which
includes only a single delamination, is investigated.

In the current paper, the compressive behavior
of composite laminates with multiple through-the-
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latter characteristic of the method is original in that
some interesting results are obtained and compared
with those achieved by the application of the finite
element method. The agreement between the results
is very good. It is noted that no contact between the
sublaminates is experienced for the examples consid-
ered in the paper.

MODELING TECHNIQUE
In this section the analytical model and the applied
theory in this study are briefly outlined. The composite
plates which are studied in this paper are thin, so that
the CLPT is applied in the analytical formulation. As
a result of the CLPT assumption [18]:
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(1)

where @, ¥ and @ are components of displacements at a
general point, whilst v, v and w are similar components
at the middle surface (z = 0). Using Eq. (1) in the
Green’s expression for in-plane nonlinear strains and
neglecting lower order terms in a manner consistent
with the usual Von Karman assumption gives the
following expressions for strain at a general point [18]:
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Figure 1. A typical plate with two through the width delaminations.
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On the assumption that the plate is in a state of plane
stress, the stress-strain relationship at a general point
for the plates becomes [18]:

O Q:u 912 Ql(ﬁ Ey
0y ¢=| @iz Q22 Q2 Ey (3)
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where Qi; (2,7 1,2,6) are plane stress stiffness
coefficients. The constitutive equations for a plate can
be obtained through the use of Egs. (2) and (3) and
appropriate integration through the thickness. These
equations can be of a very general form which includes
general anisotropy and full coupling between in-plane
and out-of-plane behavior [18].
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In the above equation Ng, Ny and N,, are the mem-
brane direct and shearing stress resultants per unit
length and M,, M, and M,, are the bending and
twisting stress couples per unit length. The plate
stiffness coefficients are defined as [18]:

h
(Aiij’iij’ij) = / Qij(].,Z,ZQ)dZ (7/7] = 17276)
—h
(5)

The composite plates which are studied in this
paper are thin and specially orthotropic and contain
through the width delaminations. Because of the sym-
metry condition about the mid surface of the subject
laminates, the in plane and out of plane coupling stiff-
ness coefficients (B;;) are zero. Besides, the plates are
subjected to uniform end shortening e at their loaded
ends while the unloaded edges are free of any constraint
and loadings. As a result, the cylindrical bending
assumption is kept valid throughout the analysis. The
introduction of the cylindrical bending assumption into
Eq. (2) will lead to:
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The strain energy per unit volume is 157 € Using
Egs. (6) and (3) to form the strain energy and inte-
grating through the thickness with respect to z gives

an expression for the strain energy, which can be put
into the form:

L
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where L and b are the length and the width of the
laminate respectively, and
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In the expression for U there are three contributions
that depend upon quadratic, cubic and quartic func-
tions of the displacements. The concern here is with the
response of a plate structure to a progressive uniform
end shortening ¢, thus the external force does not exist
in the current problem. As a result, the total potential
energy is simply equal to the strain energy, 7.e.

o=U (9)

Solution to the nonlinear problem is sought through
the application of the principle of Minimum Potential
Energy. This of course, requires the assumption of a
displacement field to represent the variation of u, v
and w over the middle surface. Obviously, in a
delaminated plate, which is divided into 7 regions
as depicted in Figure 1, it is necessary to consider
different displacement fields for each separate region.
The requirement of the continuity condition is then
fulfilled at the boundaries.

The strains in each region can be written as
follows:
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where w(? and u(? are the out of plane and in plane
displacement of each region respectively.

The total potential energy of the laminate which
is the sum of the strain energies of each region is written
as follows:
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The Aﬁ) and Dﬁ) are the stiflness coeflicients in each

region.
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(11)

The requirement of the continuity of the displace-
ment in the boundaries is satisfied as follows:
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where hs, hs, hs4, hs and hg are respectively the
distance between the mid-planes of regions 2, 3, 4,
5 and 6 from the mid-plane of region 1 as shown in

Figure 2.

The boundary conditions of the plate in the
loading ends can be considered either simply supported
or clamped. The clamped boundary conditions with
regard to the displacement w are:

Figure 2. The delamination front.
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The functions describing the displacement fields for the
divided regions are taken to be polynomials [17]. For
clamped boundary condition the assumed out of plane
displacement functions are:
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and the assumed in-plane displacement functions are:
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The above expressions are mathematically inde-
pendent and complete. They also satisfy the boundary
conditions and the continuity requirements set forth
earlier by Eq’s (12-13).

By substituting the assumed displacement func-
tions in the corresponding potential energy expression
of each region, the total potential energy of the plate
can be evaluated by summation of the potential ener-
gies of all regions. In this process, 7 terms are assumed
for each series in a given approximation function. It
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is noted that the total potential energy of the plate is
expressed in terms of a column matrix d which contains
all the degrees of freedom as follows:

o= {) ey ey ey
(o} ey ) e}
{Wf’)}T, {Uf5>}T, {Wf‘”}T, {Uf‘”}T} (16)

The plate equilibrium equations are obtained by apply-
ing the principle of minimum potential energy. That
is to say, the partial differential energy with respect
to each degree of freedom in turn gives a set of
nonlinear equilibrium equations. In the present study
the Newton-Raphson iterative procedure is selected for
solving the equations. Once the global equilibrium
equations are solved and the degrees of freedom are
found for a particular prescribed end shortening e, it is
possible to calculate the displacements of u and w.

The longitudinal force/load P acting on a lam-
inate at a given end shortening e is determined by
integrating the longitudinal mid-plane stresses & over
the laminate cross-sectional area, i.e.

bk
P= —//@dzdy (17
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For the reader’s information, the particular end short-
ening value corresponding to the buckling point, i.e.
€cr, 18 found through adopting the procedure outline
below.

An arbitrary end shortening € is chosen and used
to carry out the post-buckling analysis. If all the
degrees of freedom appear to be numerically zero,
this will imply that the selected end shortening ¢ has
been less than the buckling end shortening. In this
case the end shortening is increased by very small
increments and the analysis is repeated. This process
is continued until non-zero values are obtained for
the degrees of freedom when the corresponding end
shortening designates the buckling end shortening of
the structure e... It may be noted that since the size
of the increments are successively reduced as the end
shortening moves closer to the €., it is possible to find
the €., with an accuracy of seven significant digits.

FINITE ELEMENT ANALYSIS
The FEM analysis is performed in order to investigate
the validation of the results obtained by the method
developed in the current study. The FEM nonlinear
buckling analysis is performed employing ANSYS5.4
software, which is a commercially available finite ele-
ment code. Within ANSYS5.4 software, the buckling
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analysis is a two-pass analysis. The first pass is a linear
static analysis which determines the stresses for a given
reference set of loads. The second pass is an eigen-value
analysis which provides the results in terms of load
factors (eigen-values) and mode shapes (eigen-vectors).
Having obtained the mode shapes from an eigen value
analysis in the manner described ahove, they are then
used as postulated imperfections in order to perform
an iterative nonlinear postbuckling analysis. In this
process, the corresponding mode shape is scaled by a
small factor (less than 0.0001) and the geometry of the
structure is then updated using scaled mode shape as
an imperfection. Within nonlinear FEM analysis, the
postulation of an imperfection is a necessary step if the
postbuckling path after bifurcation point is sought.
The FE Model of the whole composite laminate
is generated using 8-node solid elements (solid 46)
in order to ensure that a three dimensional finite
element analysis is performed. In the bonded regions
(i.e. undelaminated area), the adjacent elements and
corresponding nodes are merged, whilst in the delami-
nation area, the elements are not merged and they are
considered separately. Moreover, the mesh is further
refined at the discontinuous delamination front in order
to preserve the accuracy of the results. Figure 3 shows a
typical finite element mesh arrangement adopted in the
modeling process for a plate with a through-the-width
delamination. It is noted that similar to the developed
analytical method the FE analysis is carried out by
applying a specified level of uniform end shortening
to the loaded ends of the laminates. The application
of this end shortening is achieved by enforcing a non-
zero displacement constraint in the direction of the end
shortening across the laminate at the corresponding
loaded ends. This constraint which has the magnitude
equal to that of the corresponding end shortening is
included in an appropriate set of boundary conditions.

RESULTS AND DISCUSSION
The buckling load of a composite plate with clamped
boundary conditions at its loaded ends containing
two centrally located through-the-width delamination
is given in Figure 4. The lay-up sequence of the

Figure 3. A typical mesh for a laminate with two through-
the-width delaminations.
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sublaminates and that of the base laminate are [0, 0, 0,
0]. The first delamination is located between the top
and the second ply, whilst the second delamination is
located between the second and third ply. The results
of the finite element analysis, which are obtained by
using ANSYS5.4 general purpose commercial software,
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are also presented for the comparison purpose. A good
agreement between the finite element results and those
obtained by the present analytical method is clearly
seen in the figure.

Figure 5 shows the non-dimensional load-end
shortening variations for a clamped-clamped laminate
with a centrally located through-the-width delamina-
tion. €..0 and P,.,, are the critical end-shortening
and the critical load corresponding to a plate without
any delamination. The lay up sequence of the sub-
laminate and that of the base laminate are [0,90,90,0]
and [0,90,90,0]4, respectively. Within the range of
end shortening under investigation, a clear post-local-
buckling characteristic is demonstrated by the sub-
laminate, whilst the base laminate remains almost
undeformed. The results of the present method are in
very good agreement with those obtained by the finite
element method of analysis.

Figure 6 shows the variations of the central out of
plane displacement (w/2h) with the non-dimensional
end-shortening for a clamped-clamped plate with two
central through-the-width delaminations. e€..q is the
critical end-shortening corresponding to a plate with-
out any delamination. The lay up sequence of the
top, middle and bottom sublaminates are [0,90,90,0],
[0,90,90,0]; and [0,90,90,0]5 respectively, with the de-
laminations length 0.58 L. The figure clearly shows
that the buckling is initiated in the top sublaminate
which is being restrained by the rest of the laminate
against further deflection. However, as the end-
shortening is increased, the thicker sublaminates start
to deflect considerably, and thus their restraint on the
top sublaminate is reduced. The latter mixed mode of
postbuckling causes a substantial loss in the stiffness
of the laminate. It is also seen in the figure that the
agreement between the results of the present method
and those of FEM are very good.

Figure 7 shows the non-dimensional load-end
shortening variations for the same laminate as that
discussed in Figure 6. Within the range of end short-
ening under investigation, a clear post-local-buckling
characteristic is demonstrated by the sublaminates.
€cr0 and P.., are the critical end-shortening and the
critical load corresponding to a plate without any
delamination respectively. The results of the present
method are in good agreement with those obtained by
the finite element method of analysis. It can be seen
that when the level of applied end shortening reaches
the value corresponding to the critical end shortening
for a plate without any delamination (i.e. when €/e..o
=1.0), the plate’s load carrying capacity is less than 40
percent of the critical buckling load of a plate without
any delamination. This clearly indicates that the plate
has experienced 60 percent of loss in its load carrying
capacity due to the presence of delaminations at the
aforementioned level of end shortening (i.e. at €/e.ro
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=1.0). As a result of this investigation, it seems that
a proper post-buckling analysis of the delaminated
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plates similar to that developed in the current study
is essential.

Figure 8 shows the variations of the central out
of plane displacement of the delaminated sublaminates
(w/2h) with the non-dimensional end-shortening for
a clamped-clamped plate with two through-the-width
delaminations.  €..9 is the critical end-shortening
corresponding to a plate without any delamination.
The lay-up sequence of the top, middle and bottom
sublaminates are [0,90,90,0], [0,90,90,0] and [0,90,90,0]2
respectively. The laminate length is L = 100™™,
Ly=-20"", Ls=0 and L3=L4=20"". The figure
clearly shows that the buckling is initiated in the top
sublaminate which is being restrained by the rest of the
laminate against further deflection. However, as the
end-shortening is increased, the thicker sublaminates
start to deflect considerably, and thus their restraint
on the top sublaminate is reduced. It is also seen in
the figure that the agreement between the results of
the present method and those of FEM is very good.

Figure 9 shows the non-dimensional load-end
shortening variations for the same laminate as that
discussed in Figure 8. Within the range of end short-
ening under investigation, a clear post-local-buckling
characteristic is demonstrated by the sublaminates.
€cro and P.., are the critical end-shortening and the
critical load corresponding to a plate without any
delamination The results of the present method are in
very good agreement with those obtained through the
finite element method of analysis.

The final investigation is related to the laminate
which is essentially similar to the laminate discussed
earlier in connection with the results presented in
Figures (8-9), except for the fact that in the current
investigation the position of the delaminations across
the thickness of the laminate is exchanged. That is to
say that the shorter delamination is located close to
the surface of the laminate. The geometry parameters
of the laminate are: L = 100™™, L1 = 0, Lo =
—20™m™ and L3=L,=20™™", where €..q is the critical
end-shortening corresponding to a plate without any
delamination. The variations of the central out of plane
displacement of the delaminated sublaminates (w/2h)
with the non-dimensional end-shortening are shown in
Figure 10. The figure clearly shows the mixed mode of
the postbuckling of the laminate. It is also seen in the
figure that the agreement between the results of the
present method and those of FEM are very good.

Figure 11 shows the non-dimensional load-end
shortening variations for the same laminate as that
discussed in Figure 10. Within the range of end short-
ening under investigation, a clear post-local-buckling
characteristic is demonstrated by the sublaminates.
€0 and P.,, are the critical end-shortening and the
critical load corresponding to a plate without any
delamination respectively. The results of the present
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Figure 10. Non-dimensional out of plane displacement
variations of a delaminated clamped plate with two through
the width delaminations (L1 =0, Ly = —20™"™, Lz = L4 =
20™™), €cro is the critical end-shortening corresponding to
a plate without any delamination).
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Figure 11. Non-Dimensional Load-End Shortening Varia-
tion for of a delaminated clamped plate with two through
the width delaminations (Ly = 0, Ly = —20™", Lz =
Ly = 20™™), €ecro and Pe,o are the critical end-shortening
and critical load corresponding to a plate without any
delamination

method are in good agreement with those obtained
through the finite element method of analysis.

Moreover, the comparison between the results
presented in the last two figures (i.e. Figures (10-11))
and the corresponding results presented in Figures 8
and 9 reveals the importance of the kind of analysis
carried out in this paper. This is due to the fact that
the change in the positions of delaminations has caused
a significantly different post-buckling behaviour for the
laminates.

CONCLUSION
The compressive behavior of orthotropic composite
laminates with multiple through-the-width delamina-
tions is investigated analytically. The method has
demonstrated its special capability in analyzing the
mixed mode of local buckling of the delaminated sub-
laminates with the global buckling of the base laminate.
It is seen that the buckling loads of the plates with

two delaminations are decreased through increasing the
delaminations length. It is also seen that the mode
of post-buckling and the corresponding load-carrying
capacity strongly depends on the delaminations length
and depth. The finite element analysis is performed
using ANSYS5.4 general purpose commercial software,
and the results are compared with those obtained by
the analytical model. The agreement between the
results is very good.
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