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Vibration and Critical Speed of Axially loaded
Rotating Orthotropic Cylindrical Shells

K. Daneshjou!, M. Talebitooti?, R. Talebitooti?

In this paper, classical thin shell theory is used to analyze vibration and critical
speed of simply supported rotating orthotropic cylindrical shells. The effects
of centrifugal and Coriolis forces due to the rotation are considered in the
present formulation. In addition, axial load is applied to cylinder as a ratio
of critical buckling load. Finally the effects of orthotropic ratio, material and
geometry of the shell as well as axial loads on bifurcation of natural frequency

are investigated.

INTRODUCTION

The critical speed analysis of shaft-disk systems has
been extensively investigated in the last hundred
years whereas similar analyses on cylindrical shells
or drum-like rotor structures have been few and far
between. Rotating cylindrical shells are used in many
industrial applications such as gas turbine engines,
electric motors, rotary kiln and rotor systems. The
orthotropic cylindrical shell is extensively used in me-
chanical structures, such as aircraft fuselages, missiles,
and submarines, etc. Hence, vibration characteristics
of rotating orthotropic cylindrical shells are of great
importance. The rotating cylindrical shells can be fa-
tigued by lower speed than the design speed. Therefore,
one should analyze the vibration characteristics of the
rotating shell to obtain the stability and reliability.

The first published work on this problem was by
Bryan [1], in which a rotating thin ring was considered
and it was here that the phenomena of traveling modes
were discovered. The effects of Coriolis forces were
first investigated by DiTaranto and Lessen [2] for an
infinitely long, isotropic cylindrical shell. Srinivasan
and Lauterbach [3] later combined both the effects of
Coriolis forces and travelling modes in the study of
rotating isotropic cylindrical shells. However, these
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three articles concentrated mainly on natural frequency
analysis.

The first critical speed results for rotating shells
were obtained experimentally by Zinberg and Symonds
[4]. The results also proved the advantages of using
shells made of orthotropic materials over aluminum
alloy shells. A finite element approach was used by
dos Reis et. al. [5] to obtain the critical speeds in the
evaluation of the shell of Zinberg and Symonds [4]. A
simplified theory for analyzing the first critical speed
of a composite cylindrical shell was performed by Kim
and Bert [6]. Results obtained using various shell
theories were compared. The vibration and critical
speed of thin, isotropic cylindrical shells under constant
axial loads is studied by Ng and Lam [7]. Haung
and Chen used a modified receptance method for the
vibration analysis of rotating cylindrical shells with
internal, symmetric as well as external ring stiffeners
[8]. Lee and Kim used the energy method to examine
the effect of boundary conditions on the free vibration
of rotating composite cylindrical shells with orthogonal
stiffeners [9,10]. Lam and Loy [11] also compared the
natural frequencies of rotating laminated cylindrical
shells with different shell theories, namely Donnell’s,
Flugge’s, Love’s and Sanders’.

Liew et. al. [12] proposed the harmonic repro-
ducing kernel particle method for the free vibration
analysis of rotating cylindrical shells. The effects of
centrifugal and Coriolis forces as well as the initial hoop
tension due to rotation are all taken into account. Zhao
et. al. [13] presented the free vibration analysis of sim-
ply supported rotating cross-ply laminated cylindrical
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shells with axial and circumferential stiffeners using an
energy approach.

In most publications on critical speeds of rotating
cylindrical shells, the effects of axial loadings on the
critical speed characteristics of orthotropic shell are not
found. In this paper, a theoretical analysis is presented
to study the critical speeds of rotating orthotropic
cylindrical shells under axial loadings. The analysis is
carried out using Sanders theory for thin shells together
with consideration of the initial hoop tension and cen-
trifugal and Coriolis forces. The problem is formulated
to allow the cylindrical shell any boundary conditions
but for simplicity, results are presented only for the case
of simply-supported shells as the displacement fields
which satisfy these boundary conditions can easily be
expressed in terms of the products of sine and cosine
functions.

THEORY AND FORMULATION

The cylindrical shell under consideration is with con-
stant thickness h, radius R and length L, rotating
about the z-axis at constant angular velocity €. The
reference surface of the shell is taken to be at its
middle surface where an orthogonal co-ordinate system
(2,0,z) is fixed. The x co-ordinate is taken in the
axial direction of the shell, where the 8 and z co-
ordinates are respectively in the circumferential and
radial directions of the shell as shown in Figure 1. The
deformations of the cylinder are defined by u, v, w in
the z, 8, z directions respectively. The elastic modulus
in axial and circumferential directions are denoted by
E., Ey and corresponding Poisson’s ratio by v,, vp
respectively. Also mass density is denoted by p and
the constant extensional axial load per unit length by
N,. For an orthotropic shell the stress-strain equations
are:
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which, when inverted, become:
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Figure 1. Co-ordinate system, circumferential modal
shape.

However, the five elastic constants E,, Eg, 7., Vg
and G are not independent; symmetry consideration
requires that:

VaEﬁ = VﬁEa (7)

The equations of motion for a orthotropic cylindrical
shell can be written [14] as:

[LD—M+ I(D LMod, Sander+ (]-/O)Lint] {U, v, w}/ = 5
(8)

where Kp = h?/12R?, C = Eh/(1 — vavg) and § is
defined as:

82
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[Lpo—w], [Latod, Sander] are the Donnell-Mushtari and
modifying Sanders operator, respectively, and [Liy] is a
matrix operator containing the additional terms which
account for initial stresses. Donnell-Mushtari operator
is defined as:
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where s = z/R; Ci1, Ci2, C and Cgg are the
extensional stiffness constants defined by:

E. h Esh
Ci = 10 o0 Ca = b (17)
—Vq Vg 1—vyvg
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and D11, D12, D22 and Dgg are the bending stiffness
constants defined by:

E.h? Egh?
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Modifying Sanders operator is defined as:
bin b2 bis
LMod,Sander = b21 b22 b23 (23)
bs1  bz2 b33
where
1 -D66 82
= - 0 2 4
=1 D, o (24)
9 -D66 82 D26 82
= - — — 3— Ty 25
b22 4 _D22 852 + D22 + 892 ( )

39
D16 g4 -D26 ot
=418 —26 26
bss Dy 08300 ' Doy 05063 (26)
_ _ 3 Degg 92 1 Dog 92
b=t = D, 5508 2 D OB 27
b by L2189 Des 8 1Dy &
13717 5 Doy 05200 Doy 050602 2 Doy 963
(28)
-3 D1 98 D12+ 3Dgg o3
baz = bz = — — = —
2 D22 Jss D22 05206
T Dy & P
2 _D22 Os 062 063
(29)
and for initial stresses we have:
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113 =131 =0 (38)

where N,¢ = 0 and The initial hoop tension due to the
centrifugal force is defined as:

Ng = ph Q*R? (39)

If the shell assumed is simply supported, there exists a
solution for the above three equations in the form:

u = Acos 2~ cos(wt + nd) (40)
v = Bsin Y sin{wt + nd) (41)
w = Csin 77¢ cos(wt + nb) (42)

where n represents the number of circumferential waves
and m the number of axial half-waves in the corre-
sponding standing wave pattern. Eq. (8) is solved using
an eigenfunction expansion in terms of the normal
modes of the free vibrations of a cylindrical shell.
Substitution of Eqs. (40-42) into Eq. (8) yields a set
of three coupled homogenous equations.

My My Mas A 0
Moy Moy Mo | < B =<0 (43)
M1 Mz Mas| (C 0

Imposing non-trivial conditions on Eq. (43), the charac-
teristic frequency equation is obtained by equating the
determinant of the characteristic matrix in Eq. (45) to
Zero.

Brwdn+ Bowm + Basw? 4 Bawi+ Bswpy, + B =10
(44)

Matlab Toolbox is used to solve six roots of Eq. for
each m and n.

NUMERICAL RESULTS

The theoretical model developed can be used very
effectively in the basic design stage of cylinder-shape
in rotating systems. As a demounstration of such
applications, design parameter studies are conducted.
Numerical results have been generated for a cylindrical
shell, with L/R = 20, R/h = 50 and different ratios of
OR, = Ey/E, when (Ey = const) and OR, = Ey/E.
when (E, = const). The modes of interest here are
the transverse modes as they correspond to the lowest
two natural frequencies. The two higher axial and
circumferential modes are not presented.

The critical speed phenomena can be clearly
illustrated in Figure 2. The bifurcations of the natural
frequencies for the transverse modes of (m,n) =
(1,1),(1,2),(1,3) for the shell of OR, = 0.5 and
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Figure 2. Bifurcations of natural frequencies of a rotating

cylindrical shell of L/R = 20, R/h = 50, OR, = 0.5.
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Figure 3. Bifurcations of natural frequencies of a rotating
cylindrical shell of L/R = 20, R/h = 50, OR. =2, (m,n) =
(1,1) with different axial load.

without axial loading are presented. In the figure, Y,
and X denote the normalized natural {requency (W)
and rotational speed () respectively normalized with
respect to the non-rotational natural frequency of ratio
OR, =1 (isotropic shell) w0

Y, = ~mn (45)
wmno
Q
X = (46)
wmno

Due to the Coriolis acceleration, the nodal lines
are neither stationary nor rotating at the same angular
velocity as the shell. It can be shown that each mode
rotates at its own speed given by Q— wp,/n with
respect to a stationary coordinate. The lower branch
corresponds to the forward whirl and the upper branch
corresponds to the backward whirl.

The critical speed of the rotating shell which
occurs for mode (1,1) corresponds to the rotational
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Figure 4. Bifurcations of natural frequencies of a rotating
cylindrical shell of L/R = 20, R/h = 50, OR, =2, (m,n) =
(1,1) with different axial load.
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Figure 5. Sensitivity of natural frequencies of a rotating
cylindrical shell L/R = 20,R/h = 50, OR, = 2 to axial

loads.

speed of the shell at which the forward mode intersects
the abscissa. At this inter-section, possible unsta-
ble phenomenon exists as the forward mode becomes
standing with respect to the traveling coordinate and
is ready to switch to a backward mode. At this critical
speed, any residual unbalance will synchronize with the
rotation and magnify the whirling amplitude. Also,
as seen in Figure 2 (m,n) = (1,1) has a linear rate,
whereas for (m,n) = (1,2),(1,3) the nonlinearity is
increased.

It is important to note here that the axial loading,
if compressive, must be a fraction of the static critical
buckling load, N.. The governing buckling differen-
tial equations can be obtained by neglecting terms
involving N, ,t and ©Q, in Eq. (8). The buckling loads
can be easily obtained by computing the eigenvalues
of the resulting characteristic matrix. For the shell
used in Figure 3 and Figure 4, the static critical
buckling load, N, , corresponds to the transverse mode

of (1,1) of ratios OR, = OR, = 1 (isotropic one).
These figures show the bifurcations of the natural
frequencies for the transverse mode of (m,n) = (1,1)
subjected to different axial loads. The response to
tensile loading is generally predictable for all the modes
with an upward shift for all the branches. This
can be expected as tensile loading, which causes the
shell to become stiffer. For compressive loadings, the
expected downward shifts for all the branches are also
observed. Also higher compressive loads make critical
speed phenomenon occur in lower speed. Whenever the
load approaches critical buckling load the bifurcations
of natural frequencies are canceled. Two modes of in-
terest, (m,n) = (1,1) and (2, 1), are used to investigate
the sensitivity of natural frequencies to axial loads.
Figure 5 shows that different modes include different
levels of sensitivity to the axial loadings.

It can be deduced that the level of sensitivity of
a particular mode is proportionally dependent on the
magnitude of the buckling load of that mode. For
example, mode (2,1) which has the highest buckling
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Figure 6. Sensitivity of two interest modes of a rotating

cylindrical shell L/R = 20, R/h = 50, to ratio OR,,.
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Figure 7. Sensitivity of natural frequencies of a rotating

cylindrical shell R/h =50,N, =0, OR, =0.5 to L/R.
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load is observed to be the least sensitive, and mode
(1,1) whose buckling load is the critical buckling load,
is observed to be the most sensitive.

To investigate how the effect of increase in stiff-
ness can improve the natural frequency of rotating
cylinder, especially in higher circumferential numbers
(n), the Figure 6 is illustrated. As shown no significant
difference can be observed comparing ratios OR, =
0.5,2.0 for (m,n) = (1,1), whereas, at mode (m,n) =
(1,2) natural frequency is increased due to increase of
circumferential mode number (7).

In Figure 7 the natural frequencies of the shell
for miscellaneous L/R 20, 30,40 are illustrated.
As shown, increasing this ratio decreases the natural
frequency. It is also depicted that as a result of this
growth, the critical speed shifts downwards to the
power 2.

In Figure 8 the natural frequencies of the shell are
investigated for different ratios of R/h = 50,100, 200.
It is well anticipated that when the ratio R/h shows
the increase of 100%, the critical frequencies reduce by
50%. It is due to the fact that the shell stiffness changes
at the same rate as the thickness.

Different orthotropic materials are used (Table 1),
in order to investigate the properties of orthotropic
material on bifurcations of natural frequencies of modes
(1,2).

Figure 9 shows that material should be chosen
properly to enhance critical frequency. The axial and
circumferential modulus ratios play a significant role.
That is why the natural frequencies of Graphite Epoxy
make the critical speed higher than the others. It is
observed that in high rotating speeds, all materials
behave the same approach except Fiber Epoxy. Also
critical buckling load of Fiber Epoxy occurs in mode
(2,2) but the others in mode (1,2). In addition it
should be noted that, in spite of the highest axial
module in Carbon, it is well observed that the critical
speed of Carbon material is at the lowest.

CONCLUDING REMARKS
Bifurcation of natural frequency for axially loaded
rotating orthotropic cylindrical shells, was investigated.
The critical speed of the rotating shell which occurred
for mode (1,1) corresponded to the rotational speed
of the shell at which the forward mode intersects the
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abscissa. In addition (m,n) = (1,1) behaves a linear
rate, whereas for (m,n) = (1, 2), (1, 3) the nonlinearity
was depicted. The significant increase of natural
frequency due to increase of circumferential number
(n) were observed. Also, the shell was subjected to
axial load. Subsequently, tensile loading caused the
shell to become stiffer, resulting in shifting upward
of bifurcation, whereas, for compressive loadings, the
expected downward shifts for all the branches were
observed. On the other hand, higher compressive loads

o=
— - — - {m n=(1,1),Reh=100
Y1 p— (m.n=1).RM=200 7
A _
1.4 ’

Figure 8. Sensitivity of natural frequencies of a rotating

cylindrical shell R/h =50, N, =0, OR, =2 to R/h.
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Figure 9. Bifurcations of natural frequencies of a rotating

cylindrical shell of different orthotropic material L/R =
20, R/h = 50 at mode (1,2).

Table 1. Orthotropic Materials.

Name Graphite Epoxy Carbon Fiberglass Epoxy Aramid Epoxy
Density (kg/m?) 1600 1600 1900 1500
E (GPa) 125 324 56 76
E»> (GPa) 10 5.86 13 5.5
v, 0.4 0.33 0.26 0.34
G12 (GPa) 5.9 1.1 4.2 2.3
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caused critical speed phenomenon at a lower speed.
Moreover, Bifurcations of natural frequencies were
canceled where the buckling load applied to cylinder.
Finally, Different orthotropic materials were compared,
and results indicated that the natural frequencies of
Graphite Epoxy are in the highest level.
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