JAST, Vol. 4, No. 1, pp 17-23
(© Iranian Aerospace Society, March 2007

JJournal of Aerospace Science and Technology

A Message-Passing Distributed Memory
Parallel Algorithm for a Dual-Code Thin
Layer, Parabolized Navier-Stokes Solver

M. Sarvalisha!, O. Abouali?, M. M. Alishahi®

In this study, the results of parallelization of a 3-D dual code (Thin Layer,
Parabolized Navier-Stokes solver) for solving supersonic turbulent flow around
body and wing-body combinations are presented. As a serial code, TLNS solver
is very time consuming, and takes a large part of memory due to the iterative
and lengthy computations. Also for complicated geometries, an exceeding
number of grid points are required, which results in larger serial computation
times. Therefore, parallelizing this code would bring about large saving in
computer time and memory. In this study, o cluster of 16 computational
nodes with 2.4 and 2.8 GHz, P4 CPU has been used. Also MPI library is
used for communicating data among processors. Domain is partitioned in a
1-D form in longitudinal, radial and circumferential directions, and the results
are compared with those of serial computations. There are several methods for
data communication among processors, such as blocking send and non-blocking
send. The performance of each method is evaluated and the best method for the
problem at hand is determined. The results are compared in terms of run time,
speed-up and efficiency for executing the parallel code on 1, 2, 3, 4, 8, 12 and
16 processors. Also the parallel results are compared with serial results and the
correctness of the parallel code is proved for each case. The effect of different
partitioning direction and their interaction with the turbulence modeling is
studied and the best choice is shown. The limitations of using Baldwin-Lomax
turbulence model in a parallel program are discussed and a solution is presented.

INTRODUCTION resolved.

The flow field around the nose is solved

Solution of large scale CFD problems using Reynolds
Averaged Navier-Stokes (RANS) equations is an ex-
haustive task. Thus, researchers have used simpler
forms of Navier-Stokes equations to reduce the compu-
tation. Abouali et.al. [1, 2, 3] have presented a dual
code strategy, a combination of Thin Layer Navier-
Stokes equations (TLNS) and Parabolized Navier-
Stokes equations (PNS) as a simpler substitute for
RANS equations. Using this dual code, supersonic
turbulent flow around a missile can be efficiently

1. MSc. Student, Dept. of Mech. Eng., Shiraz Univ., Shiraz,
Iran.

2. Assistant Professor, Dept. of Mech. Eng., Shiraz Univ.,
Shiraz, Iran.

3. Professor, Dept. of Mech. Eng., Shiraz Univ., Shiraz,

Iran.

by TLNS code and the rest of the body up to wings
juncture is handled by PNS code. The modeling is
switched from PNS to TLNS in the vicinity of wings.
This dual-code strategy reduced the required memory
and computer time for solving 3-D supersonic flows
over wing-body configurations. However, this strategy
is not quite useful for solving 3-D problems with
complicated geometries, which require a large number
of grid points. To remedy this problem, one may
employ fast computers with large memories. However,
such hardware is very expensive. The other choice is
to use parallel processors together with a compiler that
accommodates data communication among processors.
MPI (Message Passing Interface) is one of the best
libraries around, which facilitates data communication
among processors [4]. TFor this task, a cluster of 54
computational nodes with 2.4 and 2.8 GHz, P4 CPU

18

at HPCC, Shiraz University was at hand. But only
16 computational nodes of this cluster are used in this
work. When several nodes execute a parallel code, the
first node has to communicate the data more than the
others. Thus, to decrease the run time, it was decided
to use a faster node with 2.8 GHz, P4 CPU as the
first node and the other slower nodes (2.4 GHz, P4
CPU) as ordinary computational nodes. This study is
concentrated on parallelizing TLNS (Thin layer Navier-
Stokes) solver rather than PNS (Parabolized Navier-
Stokes), since the required memory and computer time
of the PNS solver is much less than the TLNS solver.

Many studies include parallel programming of
flow problems. Rviz-Calavera and Hirose [5] have pre-
sented a parallel time-accurate Euler code to calculate
unsteady transonic flow around wings. This code has
been implemented on a distributed memory parallel
machine with about 140 computational nodes. Two
different grids namely 80 x 16 x 30 and 160 x 32 x 30,
have been considered. This problem was solved on 1
up to 32 machines and speed-up was about 6 when 32
machines were used on a larger grid.

Drikakis [6] has presented a parallel upwind
method for 3-D laminar and turbulent incompressible
flows. Third order interpolation was used for the
computation of primitive variables at the cell faces.
The algorithm was parallelized using shared memory
and message-passing models. The grid included 224600
points and 1 to 8 nodes were used. The efficiency of the
shared memory system was about 75% (speedup=6),
but this value for the distributed memory system was
about 37% (speedup=2.96) when 8 machines were used.

Bonisch and Ruhle [7] have presented the ap-
plication of a parallel 3-D simulation code for Eu-
ler and Navier-Stokes supersonic flows around re-
entering space vehicles on distributed memory paral-
lel computers. The parallelization approach used a
domain decomposition method for the subdivision of
the numerical grid and MPI as the message passing
environment to obtain a portable application. The
new parallel application was developed from an existing
sequential code with just a few extensions within the
source code, which did not alter the numerical effi-
ciency of the sequential algorithm. Also the measured
maximum speed-up was high, in other words, with
110592 grid points, executing on 1 up to 512 nodes
was approximately linear and equaled to about 400 for
512 machines.

As it is clear from the mentioned references, the
speedup and efficiency of the parallelized codes vary to
a large extent and is case dependent. The numerical
details of the algorithm usually have a strong effect
on the success of the parallel code. In this study, the
proper parallelization model for enhancement of effi-
ciency and speed-up of a TLNS code are investigated.
It is shown that improper parallelization together with

M. Sarvalisha, O. Abouali, M. M. Alishahi

use of Baldwin-Lomax turbulence model causes some
unnecessary drawbacks that can be prevented.

GOVERNING EQUATIONS
The conservative form of Navier-stokes equations in
generalized coordinates are:

Qe+ (B =B+ (F = Fy)y+ (G-

GU)C =0, (1)

Q=Q/J,
E= &E+%F+&G
= _ & £y €.
E,=>2E, F, "
B+ 2 F 4 G
polep Mg N
F=—=E+F+ =G
o My =
Fy=ZE,+JF+ G,
G_QE+%F+Q
5 _ G Cy ¢
YR, F, " 2
G, =B+ 2P+ 2 G (2)

where @ is the conservative variable vector and E, F,
G, E,, F, and G, are inviscid and viscous fluxes,
respectively. Variables £ and (are in streamwise
and circumferential direction, 5 is normal to the wall
direction, and J is Jacobian of the transformation.
Thin layer approximation can now be applied to the
transformed Navier-Stokes equations. According to
this approximation, all viscous terms containing partial
derivatives with respect to £ can be neglected. The
resulting thin layer equations may be written as:
Qt+E§+(F—Fv)n+(é—éU)<:0. (3)

It should be emphasized that for geometries such
as wing-body combinations, G, in circumferential di-
rection should be retained. Roe upwind method is used
for calculation of inviscid fluxes and central differencing
is used for discretization of viscous fluxes. Equation (3)
may be expressed in the semi-discrete conservation law
form given as, [3],

(Qj,k,l) + (Ej+1/2,lc,l - Ej—l/Q,lc,l) +

((F - Fv)j,k+1/2,l —(F - Fv)j,k—l/ll) +

(<G B G)j,k,l-u/z - (G B GU)j,k,l—l/Q) =0, (4)

where E, F, G are numerical fluxes on the bounding
sides of a cell.

A Message-Passing Distributed Memory Parallel Algorithm

Baldwin-Lomax turbulence modeling with some
modifications is used in this code. Since implementa-
tion of this turbulence model affects the efficiency of
parallelization to some extent, the model is explained
in the following in detail. In this model y; (the eddy
viscosity coefficient) is defined as, [3],

e = min[{pe)inner, (pe)outer). (5)

For the inner layer, the Prandtl-Van Driest formula is
used to determine p; which is defined as,

(jie)inmer = pl® 10, (6)
where [, the mixing length, given as,
[= ky[1 —exp(—y™/AT)], (M)

where, k and AT are constants and equal to 0.41 and 26
respectively, || is the magnitude of the local vorticity
vector and is defined as,

ou Ov\? o ow\? ow ou\’
|2 = =) tl=—) tl=—-=]) .
dy Oz 9z Oy dr 0Oz

(8)
yT is defined as,
vV PuwTw
y* = Y, (9)

[tw

where p,, 7, and p, are the density, shear stress
and viscosity coefficient at the wall, respectively, and
y is the normal distance from the wall. In the outer
region, for attached boundary layers, the turbulent
eddy viscosity (u:) is defined as:

(ut)outer =K Ocp pFwake FI\"leb (3/)» (10)

where K and (., are constants equal to 0.0168,
and 1.6 respectively, and Fge(y) is the Klebanoff
intermittency factor,

-1

Crieb Y 6
Frey = [145.5 (L)] . (11)
ymax
Also;
: ymax -Fmax
Flore = min 12
b { ka Ymax UQDl'ff /-Fmax ()

where Cep is the Klebanoff constant equal to 0.3, C\
is the wake constant equal to 0.25 and,

UDiff = (\/u2+v2+w2) —(\/u2+@2+w2) .
min

(13)

max

19

Fluax and ynax are computed from the function:
F(y) = y|Q|[1 — exp(=y™ /AT)], (14)

such that the peak value of F(y) between the wall and
the outer flow field is defined as F,,,x and the value of
y at this station is defined as Ymax-

This Baldwin-Lomax model causes certain prob-
lems when applied in flows around slender bodies at
incidence. In the lee-ward separated flow region, it
becomes difficult to determine the correct value of
Finax, which is necessary for evaluating pis outer. In
an attached flow, there is only one maximum for
F(y) in the radial direction and Fi.x can be simply
found. When separated flow occurs, two maxima for
I(y) are encountered. The first peak occurs in the
boundary layer and a second layer peak exists due to
the presence of vortex sheet. If the Baldwin-Lomax
model is used to obtain F},.x, the second maximum in
F(y) is obtained. This results in large values of 1t outer,
causing a distortion or washout of the features in the
computed flow. Some modifications of Baldwin-Lomax
are usually applied to remedy this problem. For each
axial station, a maximum value for the scaling length
(Ymaz)w 1s defined as 1.8 times the value of ¢4 on
the windward ray. If the two peaks in F'(y) merge into
one abnormally large peak (or a peak cannot be found
at all), the value of Fj,.x is taken from the previous
roll angle and Yq, is set equal to (Ymez)w [1-3]. As
will be shown shortly, implementation of this condition
changes with the direction of partitioning, and hence
the efficiency of the overall parallelization varies.

To study the performance of parallelized code,
figure of merits such as speed-up and the percentage
of efficiency are defined as follows:

CPU time(single processor)
CPU time(multiple processors)’

speed up = (13)
%e, = (speed up/number of processors) x 100. (16)

These variables can be defined with respect to
parallel and serial results. That is, speed-up and
efficiency based on parallel and serial modes are defined
as:

speed Upy, = tp, total iterations/tnp, total iterations, (17)

speed UPgr; = ts, total iterations /tnp, total iterations: (18)

%ep,prl = tp, one iterations/tnp, one iterations/np X 1007

(19)

%ep,srl = ts, one iterations/tnp, one iterations/np X 1007

(20)

20

%et,prl = tp, total iterations/tnp, total iterations /np X 1007

(21)

%et,srl = ts, total iterations /tnp, total iterations /np X 1007

(22)

where ¢, and t,, are CPU times for executing the
parallel code on a single and multiple processors respec-
tively, and ¢, is the CPU time for executing the serial
code. Also, e, is the parallel efficiency and e; is the
total efficiency. Indices prl and srl refer to the parallel
and serial modes, and np to the number of processors.
Another parameter, granularity, which is the ratio
between computation time and communication time for
one iteration, is defined as:

Granularity = tcomp/tcomm. (23)

To ensure the correctness of the parallelized code
and make an exact comparison between serial and
parallel computation, parameters such as sd and sdn
are defined as:

Sd; = |pi| + |pi| + e + [ws] + |vi] + |wil, (24)
Sd=">"5d, (25)
i=1
Sdn = 24, (26)
nc

where nc is the number of cells. The variable percent
of error defined below is used to show the normalized
difference between the parallel and serial results.

% error = |Sdgr; — Sdpri| /Sdsrr x 100. (27)

Note that these error norms are meaningful if the same
number of iterations is used for different runs.

PARALLELIZATION METHOD
Since the PNS part of the dual-code is a marching
algorithm in axial direction, i.e., an ensemble of 2-D
problems, it really takes no major computation time.
Therefore, based on numerical experimentation, it is
decided to concentrate on parallelization of the TLNS
part, as mentioned earlier.

For parallelizing the TLNS solver, the domain
is partitioned into several sub-domains equal to the
number of processors and each sub-domain is assigned
to a processor. The discretization algorithm bonds
the solution at each point to the solution of six
neighbors around it. In other words, each point
is dependent on the two neighboring points in each
direction. This necessitates communication of data in

M. Sarvalisha, O. Abouali, M. M. Alishahi

the boundaries of the sub-domains as shown in Figure
1. That is, the values of variables at the neighbors of
each partition interface should be exchanged between
adjacent computational nodes. In other words, the
inner points of each sub-domain include the points
on the boundaries of the neighboring sub-domains.
Thus, each processor computes its own inner points
and sends the solution on the boundaries of the other
sub-domains, and receives its boundary point solution
from the neighboring processors.

TLNS code used in this research [1] is a three
dimensional code. Thus, the domain can be partitioned
in various forms. Due to the structured grid used
in this problem, one-dimensional partitioning is used.
Figure 2 shows the domain and its one dimensional
partitioning in longitudinal, radial and circumferential
directions.

Note that, if the domain is partitioned in cir-
cumferential direction, the modification of Baldwin-
Lomax model cannot be implemented in the same way
as in the serial code. Figure 3 shows this problem
when the domain is partitioned into two sub-domains
in circumferential direction. For this special case,
assume that Fl.x is frozen at the value used for
the previous roll angle. Machines number 1 and 2
start the calculation simultaneously from the planes
A and B. If machine 2 requires the value of F.x
in the previous cell in circumferential direction, then
two cases may occur. Firstly, machine 2 waits until
machine 1 computes the value of Fi, . and sends it to
machine 2. This case is similar to the serial execution
with the difference that two machines are executing the
same code; therefore, more time is taken than in the
case of serial computation. The second case is that
machine 2 takes the value of Fj,.x from the previous
iteration. In this case, some communications among
machines occur outside the main iteration loop of the
program. This results in a different solution from that
of the serial code. However, as will be shown in the
results section, parallel solutions remain very close to
the serial solutions and parallelization can be efficiently
done with a small percentage of error.

For implementation of the Baldwin-Lomax model,
the program calculates the values of Fhax, Ymax,
(Vu?+v2 +w?) and (Vu?+0? +w?) . locally

in a marching process normal to the wall direction.

123 4567 8 9 10

node 1 : 1 @)_5
node 2 : zll_i '5?)_8
node 3 ; !_EB 9) 10

Figure 1. Data communication among 3 processors.

A Message-Passing Distributed Memory Parallel Algorithm

This is idiomatically called the direct method, which
necessitates a lot of communication among processors,
and increases the run time quite rapidly as the number
of processors increases. To overcome this problem,
these extreme values in any iteration may be obtained
from the previous iteration. This is relevant when the
domain is partitioned in radial or circumferential di-
rections. However, when the longitudinal partitioning
is used, the above problem does not occure. The best
results can be obtained using this type of partitioning.

RESULTS
In this research, the effects of several parameters on
the parallelization effectiveness are studied. The first

Table 1. Correctness of the program for different directions
of partitioning.

Par. Direction
Correctness Long.it.udi.nal R.a(.iial. Circul?lf.ere.ntial
partitioning partitioning partitioning
sy 24304.6700 24092.1626 24304.6809
sdnp,y 2.5160 2.4940 2.5160
sdsrt 24304.6700
sdng,q 2.5160
Yherror 7.26x1078 0.873448 4.62x107°

1.5 Calibars
il

'\5-5 Calibers

& Calibers

(a)

(c) (d)

21

parameter is the kind of send and receive massage.
Three methods for communicating data among proces-
sors, 1.e.; blocking send, send-receive and non-blocking
send are used. A send or receive is blocking if machines
wait until the message is either fully sent or received.
In the non-blocking send method, machines do not
wait for the send or receive to be completed. This
allows the program to continue until a wait command
is encountered. This wait command is usually used
at the end of a send and receive session to assure
receipt of all messages. The send-receive method is
a blocking send with the difference that the machines
receive and send the data simultaneously, [4]. As
shown in Figure 4, the fastest method is non-blocking
send for the problem at hand. Thus, non-blocking
method with one-dimensional partitioning is used in
the next cases. The slope decline in this figure is due
to the increased communication load as the number of
processors increases.

In this section, the effect of partitioning direction
is investigated. Results of the parallelized program
for longitudinal, radial and circumferential partitioning
are compared. A supersonic turbulent flow field with
the Mach number of 3 around a missile with incident
angle of 12° and Re = 6.4 x 10° is solved on parallel
machines. The body is a cone connected to a cylinder.

=—

(e)

Figure 2. A schematic of the body and the domain partitioned in 1-D form among 6 processors in different directions, (a)
geometry of the fin-body, (b) schematic of computational grid, (c) axial partitioning, (d) radial partitioning, (e) circumfrential

partitioning.

22

Maclhime 1

Fax & Ymax (:

Maclhme 2

Figure 3. Data communication in circumferential direction
between two processors.

18
16 —Ideal
- - Blocking Send
14 ——SendRecy
= Non-Blecking Send
12 4
o
310 4
o
o
28
[
6 4
4
2
0
] 2 4 6 8 10 12 14 16 18
Number of Processors
Figure 4. Different methods of communicating data

among processors (A grid with 30x20x20 cells and 5000
iterations).

The number of computational grid points is 21 x 20 x 23
in longitudinal, radial and circumferential directions,
respectively. Because of the symmetry shown in Figure
2 ounly half of the domain in circumferential direction
is considered.

Table 1 shows the values of sdp.;, sdsr1, sdng,i,
sdn ., and the percent of error for different partitioning
directions. With regards to the results presented,
the use of the longitudinal partitioning provides the
best results compared to the radial and circumferential
partitioning. Now to find the fastest method, the
domain is partitioned in different directions, and run
times are compared for all the cases. Figure 5 shows
the comparison of run times for the longitudinal, radial
and circumferential partitioning. These results are
obtained for the wing-body combination shown in
Figure 2 and the flow conditions as explained above.
The grid points are 21x21x21 and equal number of
grid points are assigned to each computational node.

Next, the effect of partitioning direction on im-
plementation of the turbulence model is presented.
As shown in Figure 5, application of direct method
in circumferential and radial partitioning increases
the run time rapidly as the number of processors

M. Sarvalisha, O. Abouali, M. M. Alishahi

increases. The run time increase for radial partitioning
is much more than that for circumferential partitioning,
particularly, when the number of machines is more than
8 processors. The reason is that the communication
load for calculating the real values of Fioax, Ymax,
"7) ’V’ ~ for radial partitioning is much more
max min
than that for circumferential partitioning. This is so
because in circumferential partitioning the program
calculates these values only on the wings and not on
the body required in radial partitioning, hence more
time for communication. Altogether, the use of the
direct method to find the correct values of Finax, Ymax,

’v v
max min B
of processors increases. To overcome this problem, the

causes increased run time as the number

values of previous iteration for Fiax, Ymaxs ’V ,
max

’V can be used. Thus, to find the correct values

min

of Fraxs Ymaxs |V V in the whole domain,
max min

the communication would be implemented out of the
main loop of the program over £, ¢ and 7 directions.

b

Table 2. Results of parallelizing the TLNS code.

Number of .
processors tiotal(Rours) % Granularity
1 (Serial) 110.092 9.00664 —_—
1(Parallel) 155.49 12.8146 17.273

2 78.2383 6.4751 16.414

4 39.8264 3.3153 13.518

8 20.4825 1.6741 9.268

12 14.10003 1.2085 6.941

16 10.9261 0.9430 4.685

Table 3. Performance of the TLNS parallel code (based

on parallel code).

Number of Speedupprl %et,pv‘l %ep,pv‘l

processors

1 (Parallel) 1 100 100
2 1.9874 99.37 98.95
4 3.9042 97.61 96.63
8 7.5914 94.89 95.68
12 11.0275 91.9 88.36
16 14.2311 88.94 84.93

Table 4. Performance of the TLNS parallel code (based

on serial code).

Number of Speedupg,; %et,sv‘l %ep,sv‘l

processors

1 (Parallel) 0.7080 70.80 70.2843
2 1.4071 70.355 69.5479
4 2.7643 69.1075 | 67.9170
8 5.3749 67.1863 | 67.2505
12 7.8079 65.0658 | 62.1048
16 10.0760 62.975 59.6938

A Message-Passing Distributed Memory Parallel Algorithm

This reduces the computation time as the number of
machines increases. This phenomenon is also shown in
Figure 5 for radial and circumferential partitioning.

With view of the results presented, it is clear that
the longitudinal partitioning decreases the computa-
tion time more than the other types of partitioning.
Also, the results obtained using this type of partition-
ing are more accurate than other results (Table 1).

At this stage, a supersonic turbulent flow with
Mach number of 3 around a tangent-ogive with incident
angle of 6° and Re,, = 6.4x 10° is solved in parallel
and serial modes and the results are compared with
each other. The model consists of a tangent-ogive
connected to a cylinder with a total length of 6
calibers and the cylindrical part of 3 calibers. The
number of computational grid points is 150 x 50 x 40
in longitudinal, radial and circumferential directions,
respectively. Tables 2 through 4 show the speed-up
and efficiency obtained from executing the serial and
parallel codes on 1 up to 16 nodes. As shown in these
tables and in Figure 6, as the number of machines
increases, the rate of speed-up decreases, and so does
the efficiency. Also, increasing the number of machines
causes the computation time and by extension the
granularity to decrease.

400

Longitudinal
309 . Radial, Direct method
—=—Radial, previous iteration

- %= Circunferential, Direct method

280 4 —a—cCircumferential, Previous iteration ' Y S

2
£ J
5 .
£ 200 1 e et
£ e
2 150 Lenae
L.
100 4 -
50 4 2
0 T T T T T T T T
o 2 4 5 8 10 12 14 16 18

Number ef Processors

Figure 5. Comparison of the computation time between
longitudinal, radial and circumferential direction partition-
ing (supersonic flow about the wing-body combination with
21x21%21 grid points and 500 iterations).

16 4 =8 Speed-up based on parallel case
—&—Speed-up based on serial case . -

14 .]
- - Ideal case e

)

o

@

Number of Processors
w

0 1 2 3 4 56 7T 8 8 101 1213 14 16 16 17
Speedup

Figure 6. Relation between speed-up and the number of

machines (Supersonic flow about wing-body combination

with 150x50x40 grid points).

23

CONCLUSION

In this paper a Thin Layer Navier-Stokes solver is
parallelized to work on distributed memory systems.
MPT library is used for data communication among
processors. The program is parallelized for 1-D par-
titioning in longitudinal, radial and circumferential
directions over a 3-D wing-body combination. The
effect of partitioning direction and different kinds of
send and receive are studied. Although, no large
differences in the performance of the parallel code were
observed when blocking and non-blocking send and
receive were used, the interaction of partitioning direc-
tion with the implementation of the specific turbulence
model is noticeable. The problems of using Baldwin-
Lomax turbulence model for parallel programming
were addressed and a new strategy was introduced to
improve parallelization efficiency. The obtained results
show that the longitudinal partitioning is the best
choice when Baldwin-Lomax turbulence model is used.
Also when using longitudinal partitioning together
with non-blocking send, the efficiency and speed-up
of the parallel code are both noticeable. Therefore,
using the present parallel code, computation of 3-D
complicated flows would be feasible and efficient.

REFERENCES
1. Abouali O., “Dual-Code Thin Layer, Parabolized
Navier-Stokes Solution for Supersonic Flows Over
Spinning Wing-Body Configurations”, Ph.D. Thesis,
Shiraz University, Shiraz, Iran(2003).

2. Abouali O., Alishahi M. M., Emdad H. and Ah-
madi G., “Dual-Code TLNS-PNS Strategy for 3-D
Supersonic Flows over Spinning Bodies”, Journal of

Spacecraft and Rocket, 40(6), PP 893-897(2003).

3. Alishahi M. M., Emdad H. and Abouali O., “3-D Thin
Layer Navier-Stokes Solution of Supersonic Turbulent

Flow”, Scientia Iranica, 10(1), PP 74-83(2003).

4. Gropp W., Lusk E., Skjellum A., “Using MPI, Portable
Parallel Programming with the Message-Passing Inter-
face”, Massachusetts Institute of Technology, (1994).

5. Ruiz-Calavera L. P. and Hirose N., “Implementation
and Results of a Time Accurate Finite-Volume Euler
Code in the NWT Parallel Computer”, Parallel CFD
Conference, Pasadena, CA, U.S.A, PP 183-190(1995).

6. Drikakis D., “Development and Implementation of
Parallel High Resolution Scheme in 3D Flows Over
Bluff Bodies”, Parallel CFD Conference, Pasadena,
CA, US.A, PP 191-198(1995).

7. Bomnisch T. and Ruhle R., “Portable Parallelization
of a 3-D Flow-Solver”, Parallel CFD Conference,
Pasadena, CA, U.S.A, PP 457-464(1997).

