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Buckling Analysis of Rectangular
Laminated Composite Plates With An Edge
Delamination Under Compressive Load

M. A. Kouchakzadeh!

A buckling analysis of rectangular laminated composite plates with an edge
delamination under in-plane compressive loading is performed using the finite
element method. Such plates may be considered as simplified models of stiffener
plates of a stiffened panel. The buckling load and buckling mode are obtained by
solving an eigenproblem. In an unconstrained analysis, physically inadmaessible
modes may appear because of the overlap between separated sublaminates in
the delaminated region. To eliminate overlap, constraints are added iteratively
on the entire overlapped area using penalty function method. The validity and
superiority of the analysis method in predicting buckling load and buckling mode
are shown in comparison with the experimental and analytical results available
in the literature. Numerical results show the effect of delamination width and
depth and boundary conditions on the buckling load.

INTRODUCTION

Delamination is one of the most serious failure modes
of laminated composite plates and can severely reduce
their compressive strength. It may arise because of
imperfections in the production process. A common
cause is the air bubble trapped between the plies of
laminated plate at the time of production resulting in
a circular or elliptical embedded delamination.

Delamination can be the consequence of the low
velocity impact of foreign objects, which usually appear
as multiple embedded delaminations through out the
thickness of the laminate. In addition, delamination
may arise because of interlaminar stress at the inter-
faces of the plies. This is particularly important when
the laminated composite plate is subjected to periodic
load (fatigue). It is known that complex interlaminar
stress distributions arise at the interface of the plies of
laminated plates, especially near the free edges. The
stress components change rapidly near the edge and
can induce ‘edge delamination’.

Considerable research has been conducted to
know more about delaminations and their effects on
the structure. A single one-dimensional through-the-
width delamination is the simplest model, which was

1. Assisstant Professor, Dept. of Aerospace FEng., Sharif
Univ. of Tech., Tehran, Iran, Email: mak@sharif. edu.

investigated by Chai et.al. [1]. They were perhaps the
pioneers to characterize delamination buckling models
by delamination thickness and the number of delam-
inations through the thickness. Other researchers [2-
5] investigated similar through-the-width delamination
models. Embedded delaminations with various shapes
were investigated as more practical models [6-12].
Another delamination model with practical interest
is the edge delamination, which is investigated by
Suemasu et.al. [13,14]. They have conducted an experi-
mental and analytical investigation on the compressive
buckling behavior of orthotropic plates with an edge
delamination.

To investigate the response of the delaminated
composite plate under in-plane compressive loading,
a buckling analysis is required. This analysis may
be carried out in two ways, one is to follow the
history of load-displacement variations in a non-linear
analysis, the other is to solve an eigenproblem. The
former method provides us with buckling load along
with displacement information; however, the later one
results in just buckling load and mode. Usually the
chief concern of designers is the buckling load. In this
case, the eigenproblem method is the proper selection
because of its relative simplicity and speed.

Unconstrained buckling analysis of delaminated
composite plates leads to physically inadmissible re-



sults in some cases due to overlap. Searching for
physically admissible result requires constraints to be
added in a contact analysis. There are two basic and
well-known methods for insertion of such constraints,
“Lagrange multiplier method” and “penalty function
method”. The penalty function method is commonly
used for contact problems. As compared to the La-
grange multiplier method, the penalty function method
can give only an approximate solution, however, in the
case of penalty function method no zero is encountered
on the diagonal components of the stiffness matrix, and
the number of unknowns does not increase.

Although delamination buckling problem has
been already investigated extensively for different mod-
els, the contact problem seems to need further con-
siderations. As an example, the specific model of
edge delamination is considered by Suemasu et.al. [13];
however, they report a problem in matching the results
obtained by experiment and analysis (after inclusion
of constraint) for buckling mode in one case. They
consider just one constrained point and add imaginary
springs at that point to prevent overlap.

This study examines the effect of edge delam-
ination on the compressive buckling of rectangular
laminated composite plates. Buckling load and mode
are obtained by solving an eigenproblem using finite
element method. Constraints preventing overlap in
the form of imaginary springs with suitable stiffness
are added for all points in the overlapped area by
penalty function method through iterations. This is in
contrast to the method used in reference [13], where
a single constrained point is used at the center of
the overlapped area. In addition, here we choose the
stiffness of the imaginary springs by considering the
overlap depth and elastic properties of the structure
at each point. The effect of delamination width and
depth and boundary conditions on the buckling load
and buckling mode of delaminated plate is investigated
and the results are compared to those in [13]. Predicted
results coincide with the experimental results of the
mentioned reference for the case that an inconsistency
between analytical and experimental result is reported.

ANALYTICAL MODEL
A rectangular laminated composite plate under in-
plane compressive loading with an edge delamination
as shown in Figure 1 is considered. Each ply of the
plate can have unidirectional material properties. The
delaminated side is free and other three sides of the
plate are considered simply supported or clamped in
different cases. A practical problem may involve multi-
ple edge delaminations with different widths. However,
we consider a single edge delamination with constant
width at the free edge of the plate to simplify the
model. This enables us to investigate the effect of
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parameters such as delamination width and depth, and
boundary conditions on the buckling load and mode of
the plate.

The delamination divides the base plate in the de-
laminated area into two regions, which are called upper
and lower sublaminates with respect to the direction
of the z-axis. In lamination sequence notation, the
zero degree refers to a ply with fibers aligned in the
load direction. Nondimensional delamination width
and depth are defined as o = c¢/a and v = h/H,
respectively.

BUCKLING ANALYSIS AND CONTACT
ANALYSIS

Buckling analysis

The Mindlin plate theory is used to obtain fundamental
equations of the rectangular laminated composite plate
with an edge delamination shown in Figure 1. Finite
element method is employed for the buckling analysis
of this plate. Basic equation for the plate buckling
analysis is:

[K){¢} = AlKcl{¢}, (1)

where [K] and [K¢] are elastic and geometric stiffness
matrices of structure, and {¢ } is the generalized global
displacement vector. Bending-stretching coupling is
considered in calculation of stiffness matrices. This
eigenproblem is solved by a simultaneous iteration
method [15]. The smallest eigenvalue Ay is the buck-
ling load N,, and its corresponding eigenvector {¢;}
represents the buckling mode.

Generally, a laminated composite plate may be
unsymmetric about the mid-plane. Even when we use
a symmetric laminate as the base plate, the upper and
lower sublaminates may become unsymmetric due to
delamination. In these cases, we should pay careful
attention to the position of in-plane load applied at
the edges. If we apply the load as usual at the
mid-plane, because of the bending-stretching coupling,
displacement in the lateral direction appears from the
beginning of the load application and we will not have
a bifurcation buckling. However, by applying sufficient
moments at the loading edges and/or considering
proper boundary conditions we can make a model
closer to the real problem and obtain the buckling load.

Consider the case of applying in-plane compres-
sive load on the edge of a plate such that the displace-
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Figure 1. Rectangular laminated composite plate with an
edge delamination.
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ment of the points on the edge in the load direction
is uniform (the plate does not bend). The resultant
of such a load will be on the neutral axis, which is
not coincident with the mid-plane for unsymmetric
laminates. In our model, we should find this lateral
position and apply the in-plane load there. This
position for unsymmetric laminates may be obtained
easily by using the parallel axis theorem explained by
Tsai and Hahn [16]. Using this theorem, we can obtain
the stiffness terms of the laminate when our reference
line is transferred by a distance d along the z-axis from
the mid-plane.

Al = Ay

ng = DB;; + dAij

D;j =D;; + ZdBl'j + dQAij. (2)
Here A};, B}, and Dj; are the extensional, coupling and
bending stiffness terms with view of the transformed
axis, and A,;, B;; and D;; are similar terms with
view of the mid-plane. For example, if we have
an unsymmetric cross-ply sublaminate under in-plane
compressive loading in the z direction, the proper

lateral position for the application of the load can be
obtained by setting Bj; = 0, resulting
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Applying the load at this lateral position, or
equivalently applying the usual load at the mid-plane
plus equivalent moment, can prevent bending in the z
direction. However, because of the Poisson effect there
will be a bending in the y direction too, changing the
shape of the plate to a curved panel. Our investigation
on approximate deflection near the buckling load using
a linear static analysis indicates that this bending is
very small and is ignored in this analysis.

d= (3)

Displacement conditions at intersection of
sublaminates and base plate

Each sublaminate in the delaminated region is consid-
ered as a separate Mindlin plate. In the finite element
mesh as shown in Figure 2, we consider separate meshes
for the upper and lower sublaminates and connect
them at the intersection of sublaminates and base plate
(y = ¢) by using displacement conditions similar to
the Mindlin plate displacements. For example the
displacements of point j on the upper sublaminate is
related to the displacements of point 7 on the base plate

as
Uy =i — 2jbyi,

exj = Hxia

V; = V; — Zjeyl'
Oy; = Oy, (4)

Wy = Wy,

where u, v, w are translations in the z, y, z
directions and 8,, 8, are rotations in the zz and yz
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Figure 2.
sublaminates and base plate.
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Figure 3. Admissible and inadmissible buckling modes of
a delaminated plate.

planes. Relations similar to Eq. (4) are considered
as constraints on all points on the upper and lower
sublaminates at ¥ = ¢, and are included in the analysis
by using the penalty function method.

Contact analysis

A delaminated plate buckles in local, global or mixed
buckling modes under in-plane compressive loading as
shown in Figures 3(a), 3(b) and 3(c), respectively.
An unconstrained analysis of delaminated plates leads
to physically inadmissible results in some cases due
to overlap as shown in Figure 3(d). Searching for
physically admissible results requires constraints to be
included in the analysis, thereby preventing interpen-
etration. In this study we use the penalty function
method for this purpose.

The overlap spreads over an area, which may not
be small in all cases. Adding a single constraint at
the center of overlapped area is not sufficient since the
deformation around the point changes after including
constraint and we may have overlaps at nearby points
again. To prevent this, we should add constraints on
all overlapped areas rather than a single point at its
center. In this study, we use the finite element method
and consider the plate as discrete points. Therefore, we
add constraints for all discrete points in the overlapped
area. The constraint value for each point is calculated
by considering the elastic properties and overlap depth
at that point.

Penalty function method and fictitious springs
The penalty function method is a common method to
include constraints in the analysis. The problem is to



find the solution by minimizing the potential energy
of the structure U(¢), subjected to some constraints.
In the penalty function method, we make a pseudo-
objective function U, by adding a penalty function to
the original objective function in the form

U(¢,rp) = U(¢) +1pP(¢). (3)

Here, P(¢) is the penalty function, and r, is
a multiplier determining the magnitude of penalty.
There are different variations of the penalty function
method which determine the shape of the penalty
function P(¢). In “exterior penalty function method”
we consider the square of the active constraints as the
penalty function.

In overlap problems, the constraint is:

>0, (6)

where ¥§ is the gap between any pair of points
1 and j on the upper and lower sublaminates in the
overlapped area as shown in Figure 4. Considering this
constraint and representing r, with £*/2, the pseudo-
objective function is given as:

1M¢H1:U@u+%ﬁﬁ?w? (7)

Representing the pseudo-objective function in this form
gives a physical meaning to the constraint. The
constraint works as a fictitious spring with a stiffness of
“Jk* inserted between points i and j on the upper and
lower sublaminates in the overlapped area to restrict
their relative displacements and hence eliminate the
overlap. It should be mentioned again that the second
term in the right hand side of Eq. (7) should be added
for each pair of discrete points in the overlapped area.
In practice, we add constraints by adding the effect
of these fictitious springs to the stiffness matrix. We
should find suitable values for the stiffness of fictitious
springs. It is necessary to eliminate the overlap in
an iterative process by reducing the allowable overlap
through iterations.

Calculation of k*

An efficient method for the calculation of k£*, which
considers the elastic properties of the structure and
overlap depth at each position, is introduced by Sekine
et.al. [12]. The final results of that study are repro-

duced here. As an example, consider the fictitious
Overlapped J
region u

;5< Upper layer

Lower layer

uk*

Figure 4. Insertion of fictitious spring to eliminate overlap.
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spring ¥ k* between points ¢ and j on the upper and
lower sublaminates as shown in Figure 4. To obtain
the suitable value of “k* we extract two equations
related to the lateral displacement of points ¢ and j
from Eq. (1), and include the effect of the unknown
fictitious spring between them. Then we find the value
of fictitious spring, which restricts the overlap at points
7 and j. After some manipulations we can find the
stiffness of the fictitious spring to be inserted between
these points as:

(kmm +kmn)Pn - (kmn+knn)Pm

2 (K 4 2k +Kinn)

+ ;fr (kgnn - kmmknn)

22 (B + 2K+ Fonn)

ijk*:

where
N

Z kmiwy, (9)

N
P, =2 Z kamiw; —
= (#mdtn)

N N
P,=A Z kaniw; — Z kniwy (10)
=1 (l;tﬁ}l'n:,ll;én)

Here, lateral displacements of points ¢ and j are
the m-th and n-th elements of the global displacement
vector, k and kg are the elements of elastic and
geometric stiffness matrices, N is the total degrees of
freedom in the structure, ¥§ = w, — w,, is the overlap
depth between points 7 and 7, and r is an initially small
value which is increased in each iteration. To eliminate
overlap, we should find the stiffness of fictitious springs
for all points in the overlapped area using Eq. (8) and
add their effects in the stiffness matrix. The overlap
can be reduced as much as required by increasing
the value of r through iterations. The initial value
for r and its increasing pace control the convergence
rate. Choosing an initial value of 0.00001 for r and
multiplying it by 3 may form a good convergence
pattern. The maximum overlap is the convergence
criterion, where iteration will be terminated if the
maximum overlap is smaller than a preset small value.

One point should be considered when we use
this method, and that is multiplying ¢;, the eigen-
vector corresponding to the smallest eigenvalue of the
eigenproblem in Eq. (1), by a minus value changes
the overlapped area, although both of them are valid
eigenvectors. To determine the overlap region we use
Rayleigh quotient to guess the buckling load of the
next iteration and follow the mode corresponding to
the lower buckling load.

¢ (K + K*)

A+ AN = - :
o1 Kooy

(11)
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Here, AX is the buckling load increment due to
introduction of fictitious springs and K* is a matrix
containing all fictitious springs in proper positions.
We will have two different K* s for ¢; and —¢.
Therefore, we obtain two different AX values. The
mode corresponding to the smaller A\ is considered
as the buckling mode.

RESULTS AND DISCUSSION

The numerical results are obtained by using the finite
element method. In this study, we use a regular mesh of
eight-noded isoparametric Mindlin plate elements with
five degrees of freedom per node. In the delaminated
region, two series of elements on top of each other are
considered. Displacements of the points at the inter-
section of sublaminates and base plate are constrained
as explained earlier. To be sure about the reliability
of the results, a convergence check is performed and it
is concluded that a mesh made of 192 elements, 683
points, with 2953 degrees of freedom gives acceptable
results.

Comparison with available results

To show the validity of the present results, a com-
parison is made with the experimental and analytical
results presented by Suemasu et.al. [13]. As the
first step, to be sure about the buckling analysis,
the buckling load of the intact plate is compared to
the experimental results. The material used in the
experiment is plain woven carbon fiber-reinforced com-
posite (Toray T300/epoxy, VI ~50%) with properties
of material A in Table 1. The plate has sixteen plies,
H=3.49 mm, a=65 mm, and b=240 mm. Three sides
of the plate are simply supported and other side which
is along the length of the plate is free. The simply
support line along the length of the plate is placed 5
mm inside the plate. The experimental buckling load
for the intact plate has been 680 kgl (6664 N). The
present method results in 6570 N, which is about 1.4
percent lower than the previous results.

In the next step, the results for the case of a=1/2,
v= 2/16 are investigated. Here, plate dimensions are
H=3.49 mm, =60 mm, and =240 mm and the simply
supported line along the length of the plate is placed
exactly on the edge. The analytical results for the
buckling mode of this case are shown in reference
[13] and it is said that this buckling mode does not
coincide with the experimental one, which closes at

Table 1. Material properties.

Material | Eq1 (GPa) Eoo (GPa) G2 (GPa) V12
A 61.7 61.7 5.17 0.046
B 181 10.3 7T 0.28

Figure 5. Buckling modes for «=1/2, y=2/16 by Suemasu
et.al. [13] (a) Inadmissible solution, (b) Admissible solution.

(b)
Figure 6. Buckling modes for a=1/2, v=2/16 Present
analysis (a) Inadmissible solution, (b) Admissible solution.

its center. The inadmissible and admissible buckling
modes obtained there are shown in Figures 5a and
5b. Dashed and solid lines show the contour lines
of deflection of the upper and lower sublaminates
in different scales, respectively. In [13] to eliminate
overlap, only one constrained point is introduced at
the center of the overlapped area.

In the present study, I add constraints on entire
overlapped area and increase the penalty value through



iterations, as described earlier. The buckling modes of
the same case when analyzed with the present method,
are shown in Figures 6a and 6b. As it is expected
from the experimental results, the gap between the
sublaminates closes at the center.

Figure 7 shows buckling loads obtained by the
present study and those of Suemasu et.al. [13]. The
normalizing factor for buckling load in Figure 7 is
N1=5.83x10% N, which is the buckling load of an intact
plate. This figure shows that buckling load decreases
by increasing the delamination width «. For small
delamination width, buckling load is high, as global
buckling mode is governing. As we increase o and pass
about a=0.35, buckling load decreases sharply with
appearance of mixed and local buckling modes. The
reduction of buckling load in the global mode phase is
almost linearly proportional to a.. The slope of this line
however, is slightly different in the two studies.

Figure 7 also shows that in the case of a=1/2,
v= 2/16, there is another local buckling mode with a
buckling load very close to the first one. This buckling
mode (after elimination of overlap) includes three
waves and opens at the center, similar to Figure 5(b).
Probably, the insertion of a single severe constraint in
[13] has caused a change in the buckling mode. The
second mode in the current analysis has appeared as
the first mode in [13].

Effect of different parameters

A rectangular laminated composite plate with a single
edge delamination as shown in Figure 1 is used to
solve some numerical examples. Material properties
are B in Table 1. The plate is made of sixteen
plies with [0/90]4s lamination sequence, and the plate
dimensions are H=3.40 mm, =60 mm, and =120
mm. Various cases are analyzed to investigate the
effects of delamination width and depth and boundary
conditions on the buckling load.

Effect of delamination width and depth

A rectangular cross-ply laminated composite plate as
defined above is considered. The delaminated side
is free and other three sides of the plate are simply

Z'_ 0:6 » Admissible
\
~ kY / Solution
5 b
Z 06 O Suemasu et al., Experiment ¢ /
Suemasu et al., Admissible \“\“
——— Suemasu et al., Inadmissible \'l
0.4 ~.0
. Present Analysis, Admissible / P
~a
/ <
P t Anal Inad bl
0.2 o resent Analysis, Inadmissible [
A Present Analysis, Second mode Solution
0 T T T
0 0.1 0.2 03 0.4 0.5 0.6
0%

Figure 7. Buckling loads for v=2/16
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supported. As explained earlier, presence of delam-
ination can result in unsymmetric sublaminates. In
this case we should be careful about the boundary and
load conditions to have a bifurcation buckling problem.
In the simply supported case, extra moments at the
loading edges are needed. Here we calculate them using
Eq. (3) for each sublaminate.

Figure 8 shows the buckling loads for various
delamination widths a when delamination is placed at
different depths v. For example, v=1/16 refers to a
delamination placed at the interface of the first and
second plies and y=8/16 represents a delamination
placed at the mid-plane. Solid and dashed lines
show the admissible and inadmissible results respec-
tively. The normalizing factor for the buckling load is
Ny=1.94x10* N, which is the buckling load of an intact
plate.

For delamination with very small width («<0.06),
we see global buckling modes with buckling loads close
to the buckling load of the intact plate. Increasing
the width of the delamination results in appearance of
mixed and local buckling modes with lower buckling
loads. The delamination width, which provokes this
mode change, depends on the delamination depth ~.
For thin delaminations (y<2/16), the mode changes
sharply from global mode to the local mode and
buckling load drops rapidly. However, in thicker
delaminations the change of buckling mode is relatively
smooth. For delaminations placed deep inside the
thickness (y>5/16), no local buckling occurs and we
see only global and mixed buckling loads with relatively
high buckling loads.

The effect of constraints on the buckling load is
visible in Figure 8. The overlap occurs in local or mixed
buckling modes. Therefore, there is no considerable
effect of constraints for deep delaminations (y>4/16).
For thin delaminations, the effect of the constraints
appear when the global mode changes to mixed mode
as « increases. This effect disappears in wider de-
laminations because the delaminated section is larger
and overlap may be eliminated easily. A small cusp
can be seen around a=0.36 in the curve for y=3/16.
This is because the buckling mode is changing at this
point from a two-wave form to a one-wave form as «
increases. After change of the buckling mode to a one-
wave form, the buckling load decreases more rapidly as
can be seen from the graph.

Effect of boundary conditions

To examine the effect of boundary conditions, two cases
are considered. In one case, which we call simply
supported, the edge with delamination is free and other
three sides are simply supported. The other case, which
is called clamped, has one free edge with delamination,
its opposite side is simply supported and load-bearing
sides are clamped.
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Figure 9 shows the buckling load of the laminate
under simply-supported and clamped boundary con-
ditions. The normalizing factor is No=1.94x10* N,
which is the buckling load of an intact simply supported
plate. For small delamination widths there is a great
difference between the clamped and simply supported
plates. This is because the global buckling load of
clamped plate is considerably higher than the global
buckling load of the simply supported plate. However,
as « increases the difference decreases and actually
for thin delamination we can not see any difference
between the buckling load of the cases. This means
that the boundary condition has a very limited effect
on the buckling of thin and wide delaminations where
the local buckling mode is governing.

] Admissible
] ———— Inadmissible
0.8
~ 0.6
=007
X i
= i
0.4
0.2
O R o B e R S R
0 0.1 0.2 0.3 0.4 0.5 0.6

a

Figure 8. Effect of delamination width and depth
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Figure 9. Effect of boundary conditions.

CONCLUSIONS

The finite element method was used to evaluate the
buckling load and mode of rectangular laminated com-
posite plates with an edge delamination subjected to
in-plane compressive loading. To eliminate possible
overlap, penalty function method was employed to
add constraints on the entire overlapped area. The
validity of the results was proved in light of available
experimental results. The effect of parameters such
as delamination width and depth and boundary condi-
tions of the plate on its response are investigated. It is
found that:

e Buckling load decreases as delamination width in-
creases.  This relation is nearly linear in the
global buckling mode phase. Depending on the
delamination depth, mixed and local modes appear
somewhere as delamination width increases.

e Appearance of mixed and local modes decreases the
buckling load. The thinner the delamination, the
sharper the decrease.

e Ignoring the overlap problem may result in 40% (or
even more) error margin in the buckling load of the
mixed and local modes. There is no considerable
effect in global mode.

e The constraints used to eliminate overlap should be
selected carefully, or we may find incorrect buckling
modes. It is suggested to impose the constraints on
all of the nodes in the overlapped area.

o The main effect of the boundary conditions is in
the global and mixed modes, 7.e. in thick and small
width delaminations.
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