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A Modified Midcourse Guidance Law
Based on Generalized Collision Course

S. H. Jalali-Naini!, S. H. Pourtakdoust?

In this paper, analytical solution of the generalized collision course (GCC) is
presented considering approzimate models for drag and thrust in the presence of
gravity. The GCC is near optimal for a considerable flight time toward the end.
Therefore, guidance laws based on GCC only need modification for the first stage
of flight. The proposed guidance law is a modification of midcourse strategies
based on the GCC and its implementation issues. A recursive relation for
estimation of time-to-go for the GCC is presented in order to reduce the onboard
computational burden. Two other recursive relations for time-to-go are obtained
for optimal gquidance laws. The relations can be used for both midcourse
and terminal applications. For an aerodynamically controlled interceptor, the
guidance law produces the commanded acceleration in the direction normal to
its velocity vector or approzimately normal to its body axis. Simulation results
show that the presented strategy is superior to the midcourse guidance laws
based on GCC for a greater final velocity.

INTRODUCTION

The requirement for better performance in the mid-
course phase needs the development of optimal (sub-
optimal) guidance laws (OGLs) by the consideration
of interceptor tangential acceleration and gravity ef-
fect. In the indoatmosphere, the minimization of
drag, maximization of final speed, or range may be
chosen as a desired objective function for the midcourse
phase of flight. The open-loop solution [1,2], singular
perturbation theory [3,4], neighboring optimal control
techniques about open-loop solutions [5,6], and training
a neural network have been presented to solve the
problem [7-9].

Conventional air-to-air interceptors use propor-
tional navigation (PN) or some of its modifications. A
preprogrammed vertical g-bias command during mid-
course as a function of flight time is used to conserve
energy in the midcourse phase by flying the interceptor
at higher altitudes where air drag is reduced. Empirical
methods may also be used to avoid the difficulties of
the mathematical closed-loop solution. For instance, a
trajectory may be produced by a numerical optimiza-
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tion and some waypoints are selected as virtual targets.
Then interceptor will be guided to the waypoints via
a closed-loop guidance law such as a modified PN, but
before reaching a waypoint exactly, it will switch to
the next waypoint. The simplest one for a surface-to-
air interceptor is a trapezoidal-shape trajectory in the
vertical plane with three waypoints. The last waypoint
is the real target. The two other waypoints may be
selected with a same altitude. In this approach, the
interceptor ascends to the first waypoint, then flies in
a constant altitude to reach the second waypoint and
finally dives toward the target. The distance between
the first two waypoints and their altitudes are functions
of the target range and altitude. Another alternative
is to use a moving waypoint instead of selecting several
waypoints as treated in Ref. [10] for vertical plane.
The two-dimensional methods using waypoints must
be modified for three-dimensional problems.

The open-loop solution to an optimal midcourse
guidance allows us to realize the behavior of an in-
terceptor trajectory and state variables. It is observed
that the guidance laws based on optimal control theory
can improve performance significantly. The interceptor
energy must be conserved during the midcourse phase
by flying at higher altitudes with thin air density, so
that sufficient energy is available for terminal intercep-
tion of intelligent targets. The results are useful for
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waypoint guidance as well as for the determination of
a preprogrammed vertical g-bias. Numerical solutions
are also needed to know how much the available
methods, such as PN with vertical g-bias, waypoint
guidance, singular perturbation, etc. are close to the
optimal solutions.

Singular perturbation theory aids in splitting the
optimal guidance problem into a series of low-order
subproblems that may be sequentially solved and later
combined to obtain an approximate real-time solution
to the full-order problem. Cheng and Gupta [3] used
singular perturbation theory to develop a midcourse
guidance law which minimizes the flight time. They
applied singular perturbation theory and engineering
approximations to completely eliminate the need for
solving two-point boundary value problems (TPBVPs).
In the study by Menon and Briggs [4], the cost function
minimizes flight time and the specific energy at the
final time. The singular perturbation approach in these
studies is formulated so that the slow dynamics govern
the behavior of cross range, flight path angle and
specific energy. Medium dynamics govern the behavior
of altitude and fast dynamics are utilized for variations
of the pitch and yaw angles.

In 1989, Katzir et al. [5] formulated near-optimal
guidance for real-time applications. It is based on a
neighboring optimal control concept where a comple-
mentary control is added to the precalculated nominal
control, but it can fail at some distances from the
original TPBVP solution. Another work that makes
use of this method was presented by Kumar et al. [6].

Including the thrust and drag effects in the
governing equations in the presence of gravitational
acceleration and autopilot dynamics is of high interest.
The basic ideas for three-dimensional terminal and
midcourse atmospheric strategies have been introduced
in Refs. [11,12], but the methods lack some implement-
ing issues such as estimating the time-to-go. Therefore,
a recursive relation for estimating the time-to-go is
derived from generalized relation of zero-effort miss.
Moreover, midcourse strategies based on generalized
collision course (GCC) are modified to produce a larger
final velocity using some additional elevation angle with
respect to GCC, specially at the first phase of flight.

ZERO-EFFORT MISS FORMULATION
Here, the governing equation of motion for an intercep-
tor as a particle with perfect guidance and control is
modeled as [11]

Py = _C(t)vm +u+ g(t)v (1)

where r,,,, V,,, and u denote the interceptor position,
velocity, and commanded acceleration vectors with
respect to an inertial reference {rame (Ozyz), respec-
tively. The resultant acceleration due to thrust and
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drag is modeled by the term —c(t)v,,. The problem
of modeling is resolved later using an approximate
relation of ¢(t) ~ —v,, /v,,. The model implies that the
thrust vector is assumed along the velocity vector. The
gravitational acceleration,g(t), is taken as a vectorial
function of time. The wind effect can also be included
in g(t) as a vectorial function of time.

By integrating Eq. (1) twice with respect to time,
the interceptor position is obtained as

£ (t)= By + A1tV [ Bt () + BN,
©)

where

t
Bt to) = / e—ftgc(é)dédn. (3)

to
The final position of the interceptor in terms of current
states is then given by

En(t1)= Tt Ba(t g, )V + / Bt ©)[u(€) + g(€))de.
(4)

It is desired to reach the final position rj, . The zero-
effort miss, ZEM(t), is the distance that the inter-
ceptor would miss its target position if the interceptor
made no corrective maneuver after the time ¢, that is,

u() =0fort <& <t.
(5)

To intercept a moving target, the desired interceptor
final position must be the target final position, i.e.,
r, = ri(t;). The subscripts “m” and “t” represent
interceptor and target, respectively. Assuming the
interceptor autopilot to be perfect, the zero-effort miss

is found to be [11]

ZEM(t) = 15, — t(ty),

ZEM =1, 0~ Vbt = [ Brlty. (€
: (©)

MIDCOURSE GUIDANCE BASED ON GCC
The generalized collision course is an interceptor tra-
jectory that would cause a perfect intercept if the com-
manded acceleration were set to zero. The interceptor
velocity that causes the ZEM to become zero is denoted
by V.. ; therefore, [12]

rh =T — [UBi(t, ©)g(€)de

Viee = . 7
61 (tfv t) ( )

Hence, it is concluded that:

Ve, — Vm = ZEM/B1(t;,t). (8)
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The objective of guidance laws based on GCC can be
written as:

Vmu, — Vi = 07 (9&)

V., X Vi = 0. (9b)

The commanded acceleration is considered propor-
tional to the preceding relations in the appropriate
direction, that is,

u= I{v(vmu» - Vm)v (]-O&)
u, = Ky(en, X ep,.) X en, (10b)

where u,, is the commanded acceleration in the direc-
tion normal to the interceptor velocity; e,, and e,,..
are the unit vectors of v,,, and v,,,,, respectively. Note
that the commanded accelerations in Egs. (10a,b) are
in the direction of ZEM (or opposite to it) and normal
to the interceptor velocity, respectively.

The explicit guidance is in the form of u =
A ZEM where A is the guidance gain. The com-
manded acceleration is also usually expressed as u =
(N'/t2)ZEM where t, is the time-to-go until intercept
and N’ is the effective navigation ratio in comparison
with True PN. Comparing Eq. (10a) with Eq. (8)
yields

u=AB(t t)(Vim.. — Vi) (11)
Thus K, may be chosen as

K, = ABi(ty,t). (12)
By the assumption v, = v,,,, we have

u=Ab(ts,t)vm(em.. —en). (13)

In the case of small heading error, the term (e,,.. —€,,)
becomes normal to interceptor velocity. One way to
obtain K is to equate Eqs. (10b) and (13), and obtain

I(¢’ = Aﬂl (tfv t)Um(b/ sin ¢, (14)

where ¢ is the angle between v, and v,,,, [12].

VELOCITY PROFILE PREDICTION
The presented guidance strategies need the prediction
of ¢(t) or interceptor velocity profile. Here, it is as-
sumed that the thrust acceleration is in the direction of
the interceptor velocity. This assumption is reasonable
for the midcourse phase in the endoatmosphere when
the acceleration requirement is low as it is in many
applications. A relation for c¢(t) may be fitted for
a given interceptor in terms of target position and
velocity by using simulation data. Coefficients of this
relation may be updated in flight using a look-up table.
Approximate predictions may also be used for this

matter. An approximate relation of c(t) ~ —¥,, /vy
may be utilized, so we have

Vi (1)
/ e(e)de ~ - / gy o8 (15)
i v

w(t)  Um

Therefore,

ty " 1 tr
Pilty,t) =/ eI gy ~ —/ U (0)d.
t UM(t) t (16)

On the other hand, the interceptor tangential acceler-
ation a, = dv,, /dt integrates into:

0 (1) = () + / a (). (17)

Substituting the preceding relation into Eq. (16) yields:

a2t == [ f au(€)deds. (18)

Simplifying the double integral to a single one results
in:

7t = Qan(€)ds [T vm(n)dn
V() o ()

In order to simplify the above equation, consider the
following averaging definitions:

7 = ©an(€)de

2 9
tg

Bty t) =ty + . (19)

(20)

Uy = —————— = Uy, t iy, (21)

where 7, is the average velocity between the current
and final times and a, is the time-to-go weighted
average of the tangential acceleration. One can now
rewrite Eq. (19) as

Bulty, ) =ty + —262,  Bulty,t) ~ —t,. (22)
Um Um,

When the approximate relation c(t) ~ —0,, /v is

utilized, the component of gravity along the interceptor

velocity must be included in ¢(¢). Therefore, Eq. (1) is

converted into

= —c(t)vy, +u+ g, (23)

where g, denotes the gravitational acceleration normal
to interceptor velocity. In this formulation, g must
be replaced by g, in ZEM and time-to-go relations.
The commanded acceleration is taken approximately
normal to interceptor velocity in aerodynamically con-
trolled interceptors. The tangential acceleration a, is
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the resultant of nongravitational acceleration (a;, ) and
gravitational acceleration (—gsin~y) in the direction
along interceptor velocity. For a better estimation of
B1(tr,t), the gravitational and nongravitational accel-
erations along the interceptor velocity may be modeled
separately. We can thus write

i

it = [/ (600, (6 — g (- )sim €1
(24)

where 7 is the interceptor flight-path angle. The
estimation of v is also needed. Using Eqs. (21-23)
results in [12]

iy
ZEM =t} —Tpn— Vintg— Gytrem— t Pty E)gn(€)dE

i
=r,,, —Im — Untgem — t Bty E)gn(§)dS,
(25)

where g, (t) =g+ ge,, siny. A simplified relation for 5;
may be used in the preceding relation, e.g., ;1 without
gravity effect.

Multi-Constant Profile

Consider the tangential acceleration of an interceptor
can be modeled as a multi-constant profile, that is,
U = Q4 for t;, 1 <t<t;, 1=1,2,...,.N (26)

where a;’s are constants and ¢y = ty. Therefore, for
t;—1 <t <t;, we have

/ "ty — Oan(e)de = / (b - ayde

i1

N—-1 ¢
+ Z/ (t; —t)aiq1dt, (27)
iy /b

which integrates into
u Lo 2
t (tr = au(§)d = S[t; = (tr — t;)%ay

V-1
+ 5 Za¢+1[(tf — )2 =ty —tie1)?].
(28)

Boost-Sustain-Coast

Consider an interceptor with a booster and sustainer
motor in a way that the interceptor velocity is kept
constant in the sustained phase. After the burnout of
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the sustainer motor at ¢ = ¢,,, a constant tangential
deceleration (a4) will be used, that is,

Qg for t <,
Dy = 0 for t, <t <tp, (29)
ag for t>t,,

The relation for 51(t;,t) can be obtained for ¢t < ¢, as

[0 . ad
Biltr,t) = teo + g[tio —(t —t,)] + 5ot = tp)?
(30)
or
g
61(tf» t) =ty + gtm (2tgo — tpg)
aq
+ 5 (tgo — tpg — Tas)?, (31)

where Tyys = tp, — tp is the duration of the sustained
phase. For t, <t <t,, we have

aq aq
(tf_ tp2)2 =tgot _21] (tgo -
m

2
tpgz) ’

(32)

ﬂl(tf,t)ﬁ tgo+ %

where t,,, = t;, — ¢ is the time to the burnout of the
sustainer motor. For ¢t > t,, we have §1(t,t) =t +
0.5a4t2,/Vm.

In the case in which the tangential acceleration is
modeled in the form of

Qy for t <,
O = 0 for t, <t <t (33)
—C3Vy, for t > t,,

the relation for 3;(ts,t) can be obtained for constant
cg>0andt <t, as:

1> azt
ﬂl(tfvt) = tpg + ;@pg + Tsus [1 + ﬂ]
m

Um
+ i ]_ + (lx—% [1 _ e—cs(tyo_tpy_ bw)] .
C3 Um,
(34)
For t, <t <t,, we obtain:
L —es(tgo—tpgy)
Pulty t) = tpg, + o [1 — e sltye—tpgy ] ) (35)

For t > t,, we have 31 (ts,t) =~ (1 — e~*3%e) /cs.

MODIFIED GUIDANCE FORMULATION
Simulation results show that the midcourse guidance
laws based on GCC cannot produce maximum final

velocity. On the other hand, the GCC will be near
optimal for a considerable flight time toward the end,
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if an appropriate modification is utilized for the first
phase of flight in order to achieve a larger final velocity
[14]. Here, these types of guidance laws are modified
by defining a desired interceptor velocity obtained by
rotation of v, , in the vertical plane through the angle
of v.. In other words, an additional flight path angle
with respect to the GCC is imposed in the vertical
plane. First, the projection of v,,,, in the horizontal
plane is obtained as follows:

Vi, = Vmee = (V.. * €k)€%, (36)

where e, is the unit vector of the vertical direction z.
The elevation angle of v,,,, is denoted by .., that is,
Umee
tan Yee = #7 (37)
Vinees T Vitee,

where the subscripts x, ¥, and z represent the compo-
nents along z, ¥, and z axes, respectively. Therefore,
the desired interceptor velocity direction is:

e, = €n,, C0S(Yec + Ve) + €k sin(Yec + 7e), (38)

where e,,, is the unit vector of vy, . The com-
manded acceleration in the direction normal to inter-
ceptor velocity is then calculated by:

u, = ASi(ty, o (e, X €)) X e, (39)

The relation for 7. may be chosen as

()= (0, =) (25219

for t, > Tra
t+t, g~ TG

(40)

where v, is the launch angle, v.c, = 7ec(t = 0), and
Trq is the GCC duration or terminal phase duration.
Tor t; < T'rg we apply 7. = 0 or PN guidance law.
Also, 7. may be determined in a way that the initial
acceleration command becomes zero. In other words,
the launch angle and guidance law must be compatible.

ESTIMATION OF TIME-TO-GO
The simplest relation for estimating the time-to-go is
ty = —7/v., where v, = —7 is the closing velocity. This
estimation is exact for the collision course for which
the interceptor and target velocity are constants. In
a better approximation, v. may be replaced by the
average closing velocity between the current and final
times denoted by ¥., but this average quantity is a
function of time-to-go. The estimation of time-to-go
may lead to a transcendental algebraic equation or
in special cases, it may be modeled by a high-order
polynomial. Solving this equation and also making
a logical decision to select an appropriate root is
usually a considerable computational burden and not
appropriate for practical implementation. In case the

value of time-to-go is available for the past 0.01 sec, it
is reasonable to compute the average closing velocity
using the result of the posterior step, i.e.,

to(n+1) =r(n+1)/0.(t,(n)), (41)

where n denotes discrete time index. It should be
noted that the frequency of computing the commanded
acceleration is, for example, 100 Hertz, so time-to-go is
calculated for every 0.01 sec. To do this, a second-order
polynomial of t, may be utilized [14], that is,

At ety —t =0, (42)

where A is the average relative acceleration along the
line-of-sight (LOS) between interceptor and its target.
Therefore [14],

tg =r/(ve + Aty). (43)

Solving Eq. (42) for 1/t, yields the Rigg’s equation for
the estimation of time-to-go. The correct root is [13,14]

2r

g = —————.
e+ 02+ 4Ar

(44)
The preceding relation implies that the average closing
velocity is:

T = (v, + V2 +4Ar) /2. (45)

To compute A, the estimation of time-to-go from
the previous step is utilized. The above mentioned
formulation is employed in the guidance laws based on
zero-effort miss as discussed in the second approach of
this section.

There are several conceptual approaches to es-
timate the time-to-go which lead, in general, to a
transcendental algebraic equation for t,. To explain
the procedure for developing a recursive relation, first
assume a polynomial of order six for ¢, as follows:

c6t§ + C5t2 + C4t3 + csti + czti +aty+co=0. (46)
Therefore,

c6t§ + C5t§ + C4t3 +caty + cz]ti +aty+co=0 (47)
or

A(tg)t2 + c1tg +co = 0. (48)

Any transcendental equation is converted into the pre-
ceding form, so A(t,) has, in general, a transcendental
form. Dividing Eq. (48) by ¢2 yields:

‘o (ti) ro (i) +a=o (19)

Solving the quadratic equation (49) results in
200
—c1 £/32 —4cpA

The values for ¢y and ¢q, and the relation of A(t,)
depend on the selected approach for estimating ¢,.
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First approach:

The ZEM and v,,,, depend on the value of the final
time t; or the time-to-go until intercept. There could be
several methods for estimating ¢,. Here, the time-to-go
until intercept is calculated for the GCC and denoted
by t;. To calculate v, and t}, we have one vectorial
relation for ZEM (3 scalar equations) which is set to
zero, that is,

ri(ty) =t — Vi Si(tf 1) /61 ty,€)g(€)dE=0.

(51)

By the assumption |vy,,,]| |V |, the number of
equations and unknown variables becomes equal. The
solution may be found numerically [12]. The target
final position may be modeled in the form of

I‘t(tf) =1+ Vttg, (52)

where r; and v; are the target position and velocity
in Ozyz inertial reference, respectively. With the
definition of the relative position, r = r; — r,,, Eq.
(51) is rewritten as:

ZEM =1+ ity ~ von 16,0~ [ 51(6. (6)ds=0.

(53)

Using the assumption |v,y,..| = |V |, we have

tf
T / (1], O(E)de| = v Bi(t], 1), (54)

Therefore,

202t — o2 Bt 1) + 20 - vith — 2(0Hvit)-

tF tF 2
/tfﬁ1(t7,€)g(€)d€+ tf51(t}’<,£)g(£)d£] =0.

(55)

The solution of the preceding relation gives ¢} or tj.
Using the mentioned procedure results in:

. T
tt = , 56
7 —Vi-e, + (Vt . er)2 — Ax ( )
where
L, B, 1 [v ’
A=) — —5—v,+ = / Bt §)e(€)dg
tg tg i

s vt [a a0 61)

g
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and e, = r/r is the unit vector along the interceptor-
target LOS. In this case, ¢ = % and ¢; = 2(r - v;). To
calculate A we use t; from the previous step.

Using Eq. (22) for fi(t;,t) and neglecting the
component of gravity normal to the interceptor veloc-
ity, Eq. (57) simplifies to

AF =0} -2, (58)
Hence,

 _ T

th = , (59)

2 _ 52

Ve e+ U5~ Vinios

where vy, . 18 the component of the target velocity
perpendicular to LOS.

In the case in which the interceptor velocity is
constant, t; is given by [12]

 _ T
t = . (60)

2
—Vioert+ /05 — Vipros

Therefore, Eq. (59) can be considered as a generalized
form by replacing @, for v,. Discussion on the
existence of t, for Eq. (59) is simple. In practice, the
interceptor velocity is greater than the target velocity,
80 Tm > |Vtp,os| and we have a real solution. For
approaching targets (v; - e, < 0), ¢, is positive. For a
receding target, we obtain @,, > V2 |vi,,,s|. Hence,
when T, > V2|Vip,0s |, Bq. (59) gives a positive value
for t,.

Second approach:

A very common approach in the literature to estimate
ty is to use the following equation when the relation
u =AZEM is utilized:

ZEM - e, = 0. (61)

Therefore, the commanded acceleration becomes nor-
mal to ZEM, that is,

u = AZEMpro0s, (62)

where the subscript “PLOS” represents in the direction
perpendicular to LOS. Using Eq. (61) we obtain:

[r+vtt — Vi S ( tf, / B tr, g §:| ce,=
(63)

By the definition fi(t;,¢) = t, + Bi(t;.t), one can
obtain:

T+itg— (Vi - €.)01(t, 1) [/ Bi(tr. g df] ‘e, =
(64)
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Using Egs. (22) and (23), Eq. (64) is rewritten as:

[ t fﬂl(tfvf)gn(f)dg].er}tizo’

(65)

1
T+t — {dv COSPm + o)
g

where ¢,, is the angle between the interceptor velocity
and LOS. Using a procedure like treated in Eqs. (48-
50) we obtain:

2r
to= .
12 + 42 005 o+ 1 1y, D (O]
(66)
Without gravity effect, Eq. (66) simplifies to
2
ty = L (67)

Ve + /02 + 4rd, cos oy,

The preceding relation is comparable with those men-
tioned in the literature [13,14].

Third approach:

Here, t, is calculated in a way that |ZEM| is min-
imized. In other words, 0|ZEM|/dt, = 0. For
simplicity, consider the following relation for ZEM as a
special case:

1
ZEM=r+ vt, — §avt§em, (68)

where v = v, — v,,, is the relative velocity and the
tangential acceleration a, is, here, assumed constant.
We can thus write

1 .
ZEM? = Za%t‘; —ay,(v- em)ti + (UZ — mvcosqu)ti

+ 277ty + 72 (69)

Using the relation 9|ZEM|?/9t, = 0 yields:

aiti —3a,(v- em)ti +2(v? — ra, cos ¢, )t, + 27’7”2(0.)
70

The preceding cubic equation may be solved analyti-
cally, but for the general case, the procedure used in
Eqs. (48-50) is suggested.

The recursive relations developed in this section
need an initial value for the time-to-go, i.e., t; which
is computed at the launch site. In the launch site,
the original transcendental algebraic equation may be
solved to obtain ¢;.

Special Case: short-range applications
The ZEM relation for a target with constant accelera-
tion a; and without gravity effect is given by

1 5
ZEM =r+ vt, + §att§ — avtiem. (71)
Using Eq. (61) for the estimation of ¢, yields
L 1 ,
T+ 7ty — (Gy COS Oy — Fa e )t; = 0. (72)

Solving the preceding quadratic equation for 1/t
results in

2r

t. =
S+ \/vf +27(2d, COS O, — Ggp005)

where a4, ,s = a; - €,. The relation for ZEMpyos is
then given by

By 1
ZEMpros=(Qxr)y—d,(en—cos pme, )ta+ 5a,fr,wstﬁ,

(74)

where © = (rxv)/r? is the LOS turning rate, cos ¢,, =
e, e, and

Atpros = At — (at : er)er~ (75)

Since a, generally depends on time-to-go, ¢, cannot be
omitted from the relation of acceleration command.

In the case in which the tangential acceleration
1

is constant, we have @, = 5a,. Therefore, using Eqs.

(62), (73), and (74) we arrive at

u= ]g_/[vc-l- \/Uf +27(ay COS P — Aty 05) (X €;)
—%/G/,U (em — COS ¢mer) + %/atpLos (76)

The preceding relation is a modified Augmented PN for
an interceptor with constant tangential acceleration.
In this case, a, = a, cosa where a, is the interceptor
axial acceleration and « is the angle of attack. For
implementation, Eq. (76) may be changed in the
following form:

u= ];7_/[1]04—\/1]?4—27’(0/95 cosL _atLos) ](Q Xe’”)
—%ax (e, —cosL e,) + %/atPLOS : (77)

where e, is the unit vector along body axis and L is
the look angle, i.e., the angle between LOS and body
axis (cosL=e, - e,).

SIMULATION RESULTS
To compare several PN strategies with /without vertical
g-bias and the proposed guidance laws, computer
simulation is utilized. The interceptor and target are
taken as particles with perfect dynamics. The thrust
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acceleration is assumed in the direction of velocity and
the commanded acceleration is applied in the direction
normal to velocity. The governing equation of motion
is
T-D
a, = ——e, +u, +g, (78)
m(t)
where T and D are thrust and drag forces, respectively;
m(t) is the interceptor mass, and g is assumed con-
stant. Also,

1
T=gl,m, D= §pU3nS]~efCD, Sref = 7Td2/4> (79)

where I, is specific impulse,  is mass flow rate, p
is air density, and d is the interceptor diameter. The
air density is calculated using the 1962 International
Standard Atmosphere ISO 2533. The drag polar
equation Cp = Cp, + KC7 is utilized where

0.3 for M <08
Cpo (M) =1 _o.36+0.8M—0.102 for M > 1.2 (50
M2—1 -
K() { e PSR
= 5.8M2—16M+47
58M7—16M+47 for M >1.2

and O is lift coeflicient and M is Mach number.
The values of Cp, and K for the transonic region
are calculated by the linear interpolation of the data
at M = 0.8 and 1.2. The launch mass is 650 kg
and I;, = 270 sec. The mass flow rate for boosting
and sustain phases are thqy = —32 kg/s for 6 seconds
and 1y = —5.7 kg/s for 19 seconds, respectively. It
should be noted that the interceptor is modeled as a
point mass, but the induced drag is calculated using
drag polar equation. Since the autopilot/airframe is
assumed perfect and w, is the lift acceleration, so
Cr = mun/(%pvfnSref) is substituted into the drag
polar equation. The interceptor initial position is
[0 0 1]7 m; the initial velocity is 27 m/s; and the
minimum and maximum launcher elevation angles are
14 and 70 (deg), respectively. The guidance turn-on
time is 2 seconds.

To the authors’ knowledge, there are two relations
for PN with vertical g-bias in the open literature as
follows:

w=Nv.Q~+ gpros (82)

w=Nv.Q+(N'/2)gp0s- (83)

The first relation comes from the classical concept that
any acceleration normal to LOS must be compensated
in the acceleration command so that the net relative
acceleration normal to LOS becomes equal to N'v.Q.
The latter comes from the optimal control formulation
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when Eq. (61) is utilized for estimation of ¢,. However,
it seems another g-bias is used for the midcourse phase,
but not published yet. We use the following relation:

u, = N'v.(Q2 X e,) — Ny(tg)gn, (84)

where N, is considered as a function of time-to-go until
intercept. We manipulate N, in the simulation code to
give some sense about its variation. The simulation
results for N’ = 2,3,4,5,6 and launch angles of v, =
14,20, 30, 40, 50, 60, 70 deg are summarized in Table 1
using Eq. (84). The target with initial position of
[40 0 6]7 km flies at a velocity of [-250 0 0]7 m/s.
Therefore, the initial elevation angle of the target is 8.6
deg. The results show that an appropriate combination
of g-bias and superelevation increase the final velocity.
A small superelevation needs a larger g-bias.

Table 1. Simulation results for different vertical g-bias.

| v, (deg) | Ny | N' | Vg (m/s) | ty (s) |
0 3—6 | 292 — 368 | 47.4 — 454
14 1 2—6 367 — 416 45.3 — 44.3
N'/2 | 2 =6 | 367 — 490 | 45.3 — 42.9
0 3—6 | 340 — 394 | 45.7T — 44.6
20 1 2—6 | 430 — 438 | 43.8 — 43.7
N’/Q 2—6 430 — 508 43.8 — 42.4
0 3—6 | 419 — 431 | 43.7 — 43.6
30 1 2—6 516 — 471 42.1 — 42.8
N'/2 | 2 —6 | 516 — 537 | 42.1 — 41.8
0 2—6 | 496 — 463 42 — 43
40 1 2—6 | 589 — 501 | 41.3 — 42.3
N’/Q 2—6 589 — 563 41.3 — 41.5
0 2 —6 | 585 — 493 41 ~ 42.5
50 1 2—6 | 653 — 528 41.2 ~ 42
N’/Q 2—6 653 — 587 412~ 414
0 2—6 661 — 521 41.4 ~ 42.3
60 1 2—6 702 — 554 414~ 424
N’/Q 2—6 702 — 609 41.5 ~ 424
0 2—6 718 — 548 42.1 ~ 434
70 1 2—6 | 720 — 578 42 ~ 455
N'/2 | 3—=6 | 707 — 630 42 ~ 43

We are now to choose a time-varying function for

N'"and N, by trial and error to achieve a larger value
for v,,,. For example, for the mentioned target and
v, = 14 deg, we obtain

2 for t; > 30

N'=¢ 5-0.1t, for10<t,<30 (83)
4 fort, <10
6.5 for t, > 30

Nyg=< 1+0.275(t,—10) for 10<t,<30 (86)

1 for t, < 10
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which gives v,,, = 630.8 m/s and t; = 44.84 sec. The
maximum value of final velocity in Table 1 for v, = 14°
is 490 m/s. This setting causes failure in the intercept
for launch angles greater than 31.4°. For this launch
angle (v, = 31.4°) we have v,,, = 434 m/s and t; =
67.2 sec.

For 7, = 70° and the mentioned target, N, = 0
and N’ is selected as

1.5 for ty > 31
N'={ 3-L5(t,—2) for2<t,<31 (87)
3 fort, <2

which gives v,,, = 722 m/s and t; = 45.14 sec. The
simulation results for smaller launch angles are given
in Table 2. For smaller launch angles the final speed
decreases up to v = 15°. The interceptor misses its
target for vz < 15°. We utilized the relation t, = r/v,
for Eqgs. (85-87).

If the interceptor is fired at v, = 34.33 deg, it will
intercept the target unguidedly at 539 m/s and 41.9
sec. In this case, AV = [7 |uldt = 0 and [ udt =
0. Tt follows that midcourse guidance laws based on
GCC can produce at most a final velocity of 539 m/s.
Figure 1 shows the trajectories of three guidance laws
and GCC, that is,

1. PN with N = 3.5 (N; = 0) and v, = 30° labeled
by PN in the figure,

2. PN with vertical g-bias of Egs. (85,86) with launch
angle v, = 14° labeled by no. 2,

3. PN with variable N’ of Eq. (87) with 4, = 70°
labeled by no. 3,

4. and GCC, i.e., unguided trajectory (7, = 34.33°,
u, = 0).
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Figure 1. Comparison of four guidance trajectories.
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Figure 2. Modified guidance trajectories for different

launch angles.

Table 2. Simulation results for different launch angles.

|, (@eg) [ vm, (ms) | 15 (s) |

<15 No Intercept
16 171 49.43
20 291 47.1
25 357 45.06
30 420 43.61
35 474 42.57
40 523 41.84
45 567 41.39
50 609 41.22
55 648 41.36
60 682 41.89
65 709 43.01
70 722 45.14

It is concluded that superelevation is more conve-
nient than increasing vertical g-bias for surface-to-air
applications. Air-to-air interceptors are usually fired
with zero elevation angle, so a large vertical g-bias
is needed at first to increase the flight-path angle for
medium-to-long range missions. Equations (85-87) are
obtained only for the mentioned initial conditions. In
other words, these functions must be obtained in terms
of target initial position and velocity for a specified
launch angle. Therefore, a complicated function or an
extensive look up table is needed for N', N, and ~, .

To simulate modified midcourse guidance, Eq.
(59) is utilized for estimating t, with @, = 900 m/s.
Also, Eq. (7) simplifies to

Vi, = (r + Vity — %gti) /Bi(ts,t). (88)

Next, using an adjustment to Eq. (40) gives the

following relation for 7. (in deg):

£ -8

t+t:

Ve(t) = 65 ( ) for t;, >8 (89)

The commanded acceleration is given by

u, = 4vn/t)(en xe,,) xe, for t,>38 (90)

and Eq. (84) with N' =4 and N, =0 for ] < 8.

The trajectories for this simplified guidance are
shown in Figure 2 for v, = 14,40,70°. It is seen
that even simplified relations for the proposed guidance
due to limitation of computational burden, can work
satisfactorily for different launch angles. Therefore, it
can be utilized for both surface-to-air and air-to-air
interceptors. A launcher with a fixed elevation angle
can also be used for surface-to-air interceptors. The
simulation results can be found in Table 3 for three
different values of 7, = 800,900, 1000 m/s. It implies
that the guidance law is not very sensitive to the value
of 7,,, and 7. has a dominant effect.



122

Table 3. Simulation results for simplified midcourse
strategy at different values of v, and 7.

| 7, (deg) | U (m/s) | vmf(m/s) | ty (s) |

800 626 43.80
14 900 623 43.19
1000 617 42.76
800 693 44.54
40 900 693 43.49
1000 688 42.77
800 711 48.43
70 900 723 46.37
1000 724 45.01

The relation for 7. can be determined by numeri-
cal optimization in order to train a neural network or to
develop an explicit relation. Training a neural network
has been presented by Song and Tahk [7-9] for a
surface-to-air interceptor. They proposed two guidance
methods, namely, the ~v-correction guidance law and
the o-feedback guidance law (o is the LOS angle).
In their studies, flight path angle was trained using
numerical optimization. The ~-correction guidance
law do not work even for stationary targets, so they
used a hybrid vy-correction + &-feedback guidance law
to intercept stationary targets. In another work,
they trained this hybrid guidance to intercept ballistic
targets in minimum time [9], but atmospheric targets
are intelligent, and change direction and altitude.
Training a neural network using optimization data
becomes more complicated for altitude constraints. In
addition, training is needed for each type of interceptor.
Training a neural network or fuzzy system for -, is
more reasonable than the commanded acceleration or
flight path angle especially for intelligent targets.

CONCLUSIONS

Analytical solution to an interceptor trajectory has
been obtained considering drag and thrust forces in
the presence of gravity. This formulation allows us to
construct guidance laws based on GCC, which are near
optimal for a considerable flight time toward the end,
but modification is needed for the first stage of flight.
The proposed conceptual strategy is a modification of
midcourse strategies based on the GCC by increasing
flight path angle with respect to GCC mainly for
the first stage of flight. A new recursive relation
for estimation of time-to-go for the GCC has been
presented which reduces the onboard computational
burden. Two other recursive relations for time-to-go
have been obtained for optimal guidance laws. The
relations can be used for both midcourse and terminal
applications. The conceptual midcourse method is very
flexible. It can cover various intercept geometries. A
launcher with fixed elevation angle can also be used for
surface-to-air interceptors.
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The relation for . can be determined by numer-
ical optimization to develop an explicit relation. Also,
training a neural network or fuzzy rules and mem-
bership functions for . is more reasonable than the
commanded acceleration or flight path angle especially
for targets with different altitudes. Moreover, tactical
issues can be considered in the midcourse guidance law
more practically in the relation of ~,.

Moreover, a combination of superelevation and
vertical g-bias has been applied for two modified PN
strategies. A little superelevation needs a larger g-
bias. It has been concluded that superelevation is more
convenient than increasing vertical g-bias for surface-
to-air interceptors. In this case, effective navigation
ratio in the vertical plane channel is chosen as time-
varying which increases from small values (even smaller
than 2) to its desired value for terminal guidance. Air-
to-air interceptors are usually fired with zero elevation
angle, so a large vertical g-bias is needed at first to
increase the flight-path angle for medium to long range
missions. The performance of PN strategies with verti-
cal g-bias is highly dependent on the target position
and velocity. Therefore, a complicated function or
an extensive lookup table will be needed; otherwise,
with target changing directions, inappropriate initial
settings will cause intercept failure.
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