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Numerical Solution of Parabolized Stability
Equations Using Super-Compact Scheme

V. Esfahanian', S. Ghader?

The super-compact finite difference method is used to develop a highly accurate
finite difference PSE code to investigate the stability analysis of incompressible
boundary layers over a flat plate. The PSE equations are derived in terms of
primative variables and are solved numerically using super compact method. In
these formulations, both nonparallel as well as nonlinear effects are accounted
for. The validity of the present numerical scheme is demonstrated using spatial
simulations of two cases; two-dimensional (linear and nonlinear) Tollmien-
Schlichting wave propagation and three-dimensional subharmonic instability
breakdown. The PSE solutions have been compared with previous numerical
investigations and experimental results and show good agreement.

INTRODUCTION
The objective of the present work is to develop an
accurate and cost efficient way to investigate the
stability and transition computation of incompressible
boundary layers on a flat plate. There are several ways
to predict transitions such as the linear stability theory,
and direct Navier-Stokes solutions.

The hydrodynamic stability theory is useful in
indicating the major dominant effects which hasten
or delay transition in a relative sense. Some basic
understanding of the transition problem in incom-
pressible boundary layers can be reached using linear
stability theory with the assumption of parallel flow. In
addition, the transition location can be approximately
predicted using an empirical correlation such as the
eV method. The usefulness of linear stability analysis
is limited by inaccuracies due to the parallel flow
approximation. Also, it is limited by the fact that latter
stages of transition are nonlinear.

As a transition prediction tool, the direct nu-
merical simulations (DNS) using full Navier-Stokes
equations can accurately model the early stages of
transition but require far too much computer power.
Moreover, they have been obtained only for very simple
geometries such as flat plate. Therefore, they are
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not appropriate for studying transition over complex
geometries.

A new methodology for transition prediction
which has been proposed by Herbert [1,2], Bertolotti [3]
also Chang et al. [4] utilizes the Parabolized Stabil-
ity Equations (PSE). Contrary to the linear stability
theory, the PSE can be used to study nonparallel as
well as nonlinear evolution of convective disturbances
in growing boundary layers. In addition, the PSE
does not need an empirical correlation to predict the
transition location.

The PSE constitute nonlinear parabolized partial
differential equations used to predict the laminar-
turbulent transition. Similar to classical stability
analysis, the PSE assume that transition process starts
with the small disturbances amplifications. Since the
PSE are nonlinear equations, they are valid for the
finite-amplitude disturbances. But they are limited to
flows with slowly varying properties in the streamwise
direction.

The PSE are an initial-boundary value problem
and they can be solved using a marching procedure.
As a result, the computational effort and required
storage can be reduced using the PSE. Therefore, these
equations are appropriate for a rapid and accurate
prediction of laminar-turbulent transition of incom-
pressible boundary layers.

In this context, the computation of the stabil-
ity and onset of transition location of incompressible
flow over a flat plate based on linear and nonlinear
PSE using super compact scheme and primitive vari-
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ables is performed. Two cases are computed by the
PSE theory: two-dimensional (linear and nonlinear)
Tollmien-Schlichting (T'S) wave propagation and three-
dimensional subharmonic breakdown. The present
computations are compared with available numerical,
DNS and experimental results.

PROBLEM FORMULATION

In this study, the stability of incompressible flow over a
flat plate in Cartesian coordinate system is formulated.
The Cartesian coordinates are denoted by z, y, and z,
where z is the streamwise distance from the leading
edge, and y and z are the plate normal and the
spanwise coordinates, respectively. All quantities are
nondimensionalized with the free stream velocity Us
and the fixed length 6, = ¢ (2,) = \/v%o/Us, where
Z, is a fixed starting dimensional distance from the
leading edge and v is kinematic viscosity. The resulting
nondimensional parameter is the reference Reynolds
number R, = U, é,/v at © = z, (Bertolotti et al., [5]).
Then, the three dimensional incompressible Navier-
Stokes equations in the nondimensional form are as
follows:

V-V =0, (1)
v 1

V-V)V =-Vp+ —V?V, 2
VTV = —Vp+ R, 2)
where V = (u,v,w) is the velocity vector and p is the

pressure.

To obtain the disturbance equations, one can split
the dependent quantities vector ¢ = (u,v,w,p)’ into a
steady two-dimensional mean value (basic flow) @, =
(Up, V3,0, Pb)T and an unsteady three-dimensional per-
turbation quantity ¢' = (u’,v’,w’,p’)T ie.,

o (x,y,2,t) =y (x,9) + ¢ (2,9, 2,1). (3)

By substituting the vector ¢ into the Navier-
Stokes equations (1) and (2), and subtracting the terms
satisfied by the basic flow, one will obtain the governing
equations for the disturbances ¢’, which will not be
presented here (for example see Reference [18]).

Basic Flow

For flow over the flat plate the basic flow can be
obtained by solving the self-similar boundary layer
equations (the Blasius equation):

f S EF =0, (1)
with boundary conditions:
f(0)y=f(0)=0, f(c)=1.

where f (n) is the Blasius function defined as:

=vUsxf(m), n=y Uﬁ,

vr
and ¥, is the stream function of the basic flow.
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Linear PSE

One way to derive the PSE, as suggested by Herbert
and Bertolotti [6] is to decompose disturbances into
a rapidly varying wave-like part and a slowly growing
shape function. The ellipticity is retained for the wave
part while the parabolization is applied to the shape
function. For linear PSE, one can assume that the
disturbance vector ¢’ for an instability wave with a
frequency w and a spanwise wave number 3 can be
expressed as:

(bl(x’y’ Z7t) = (ﬁ(x7y)x(x7 Z7t)7 (5)

where the shape function vector (;5 and y are:

~ oA oao T
(b:(uavvva) 9

X = exp (/f a(s)ds +i8z — iwt) .

The shape function (;5 is a function of both x and y due
to the growth of the boundary layer and the streamwise
wave number « is a function of = to permit the growth
of the boundary layer.

The linearized PSE are obtained by substituting
the disturbance vector ¢’ into the linear disturbance
equations. With the following essential property;
characteristics of the flow such as velocity profiles,
wavelengths and growth rates change slowly in the
streamwise direction. Therefore, the shape function
¢ along the streamwise direction changes such that the
second derivatives of ¢ (¢, ) are negligible. Then, the
linearized equations that describe the evolution of the
shape function ¢ will be obtained as fallows:

ol + Uy + Dy + 160 = 0,

Lit 44Uy, + 08Uy, + ap + o = 0,
Lo+ Ve, +py =0,

L +i8p =0,

where

B B 82
= _ 7 _ _ 2
= —iw+ ol + Uy + Vi '3 (o? + 5 B/ Ro

These equations can be written as a system of differen-
tial equations in terms of stability variables ¢ as follows:

9q
L(o)ld) + M(e)[g1] =0, (©
where ¢ = (4,9,w,p)7 and the operator matrices L



Numerical Solution of Parabolized Stability Equations Using Super-Compact Scheme 79

and M are defined in the following form:

a % i3 0
L+ aa% 8@% 0 «
L= ,
23 U, aJ
0 L+8e 0 &
0 0 L ip
1 0 0 0
oo 0 1
M=1 U o0 0|’
0 0 U 0
in which
E:—w+aU+v9_4&+fi—ﬁvR
= b b ay 83/2 o

Now, a scalar equation is needed to close the system.
This equation must resolve the ambiguity created by
the dependency of both ¢ and « on x. This condition
is called “auxiliary” condition, and in general can be
expressed as follows:

Yy aA
.9 — 0 7
/0 G 8a;dy ; (7)

where the components of vector ¢ are (¢,0,w) (}
denotes complex conjugate). The success of a marching
solution would require a proper way of updating the
wave number. Here, the wave number is updated as
follows:
P [ qTod
Onew = Olold — M (8)
Jlaldy

In the nonparallel boundary layers, the growth and
phase variation of some physical quantity ¥ depends
on « and ¢. Therefore, the physical growth rate 4 and
the physical wave number & for any given flow variable
¥ (such as 4,9, etc.) are defined as:

() = ~Tla(o)] < R 1 57). ©
a(x) = Rla(2)] ~ T [%%} . (10)

According to these equations, the growth rate and the
wave number depends upon the wall normal distance.
Usually, these quantities are computed at the corre-
sponding location where the fluctuation reaches its
maximum value. For incompressible flow, the growth
rate and the wave number are computed using the
streamwise velocity shape function (¢ = 4).

The solution of linearized PSE equations (6)
requires appropriate boundary conditions in the y-
direction. At the wall, the components of perturbation
velocity satisfy the no-slip condition:

G=0=w=0 y=0, (11)
and the Dirichlet conditions are applied in the free-
stream:

G=0=w=0 y— occ. (12)
For incompressible flows, some residual ellipticity ex-
ists, which can result in numerical instability in the
marching procedure for small stepsizes. Therefore, the
marching procedure will remain stable when the step-

size exceeds from the certain minimum value (Az >
A37111in)'

Nonlinear PSE

In the linear PSE, the disturbance amplitude is as-
sumed to be infinitesimally small so that the nonlinear
interaction of these waves is negligible. For nonlinear
waves, the total disturbance is assumed to be periodic
in time and in the spanwise direction. For most
problems, it is sufficient to choose a finite number of
modes. In these cases, the total disturbance vector
@' (x,y,z,t) can be expressed as follows:

N

K
= Pt (2, Y) X (2, 2, ), (13)

n=—N k=—K
where the shape function vector ¢, and x,i are:

n ~ ~ ~ ~ T
(bnk = (unkv Unk, Wnk, pnk) 5

Xnk = €xp [z (/x ani(s)ds + kBz — nwt)] .

The nonlinear PSE are obtained by substituting the
disturbance vector ¢’ into the nonlinear disturbance
equations and performing harmonic balance for both
linear and nonlinear terms. Finally, the nonlinear PSE
equations can be obtained for the shape function ¢,
of a single Fourier mode (n, k), which can be written as
a system of differential equations in terms of stability
variables g, as follows:

= H,r, (14)

Lol + M(an) | 22|

ox

where H,,; is nonlinear forcing function. The nonlinear
PSE for a single Fourier mode is equivalent to the linear
PSE with a frequency nw and a spanwise wave number
k3 with the additional forcing function H,;.

The procedure for determination of wave number
iy 18 similar to the linear PSE. For present compu-
tation, all modes are assumed to have the same phase
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speed (phase-locked condition) i.e.,

Ol = (nR(aF),I(oznk)), (15)

where ap is the fundamental TS wave, which is a
function of . The calculation of a,; is similar to the
linear case according to relation (8). For the detuned
case the computation procedure is more complicated
in the sense that mode bookkeeping becomes more
cumbersome.

The solution procedure of the linear PSE can be
applied to the nonlinear PSE, except for the modes
with zero frequency (n = 0). These zero frequency
modes are denoted as the mean flow distortion (MFD)
(k = 0) or longitudinal vortex (k # 0). The
boundary conditions (10) and (11) can be applied to
the longitudinal vortex mode (zero frequency and non-
zero spanwise wave number) without modification. For
the MFD mode, the {ree stream boundary condition for
normal velocity is replaced with Neumann condition to
allow the mean flow to adjust itself for mass balance:

Yy — 00. (16)

This would allow the boundary layer to have the
correct mass balance (or displacement thickness) due
to the modification of mean flow (U, + o) caused by
nonlinear mode interactions.

The new mode is generated into the field whenever
the maximum magnitude of the corresponding nonlin-
ear term is greater than a threshold (107%). Similarly,
a mode is removed when the corresponding nonlinear
term is less than the threshold and has a negative
growth rate.

SUPER-COMPACT METHOD

The ‘super-compact finite difference method’
(SCFDM) is a highly accurate finite difference scheme
of arbitrary order with minimal stencil size which has
been introduced by Fu Dexun and Ma Yanwen [7].
The derivation and the application of the method in
uniform grid have been presented by Ma Yanwen and
Fu Dexun [8] and by Fu Dexun and Ma Yanwen [9].
In addition, some aspects of the scheme in nonuniform
grid have been investigated by Ghader [10] and
Esfahanian et al. [11]. Furthermore, Esfahanian et
al. [12] have introduced the application of SCFDM for
geophysical fluid dynamics problems.

This method has two general equations, namely
the basic equation and the auxiliary equations. The
basic equation is obtained by using Taylor series which
relates a function f to its derivatives. In the basic
equation there is a greater number of unknowns than
equations, so auxiliary equations are needed to relate
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each derivative of f to the other derivatives. The basic
equation, in a nonuniform grid, is:

(b7 + 8o ) f; = %[a + Bos]f + %[a — Bo?]f7>

1 n n n
+ ...+ H[OJ + (—1) +1/80-j]fj< >,
(17)
and the auxiliary equations are:

1

ohanfit -+ st =
J
1 <ia1>, L 2\ p<it2>
ﬂ(l_aj)fj +5(1+0j)fj
TR (1+ (-1)ltor=hyfrn>
RO LIRS
(18)
where
STfi=fimi—fi 6 fi=f—fi-1, hj=z41—x;,

hj_1 . L (OFf
m=tt 5= ()
J |

J

a and J are free parameters. Introducing the vectors

F:{f<1>’f<2>’””f<n>}T’ E:{l,O,...,O}T,

and the matrices

atfBo a—fo> 1+(—1)"”+1ﬁo""
1! 2! e n!
1—o 14(—1)"—1om—1
A — 1 1+(_1)n—20_n—2
0 0 Loz
0O 0 0 0 0
c 0 0 O 0
;| 0 0 0 0
o 0 0 o 0 0
0 0 0 ... o™ 0

equations (17) and (18) can be rewritten into a vector
form and the following relation can be obtained:

1 .1 1
—QL(—)F]'_1 +(A+L)F; — L(oj11)Fj1 =
gj 2

(087 + BTV fIE, (19)
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L and A are N x N matrices, F and E are N dimen-

: <k> [k : Sl -
sional vectors and f; / h approximates 5t with the
accuracy of order N — k + 1. In the case o; = 1, the
coeflicients in (19) do not depend on the coordinate
direction and the mesh grid points.

By choosing @« = 8 = 1 and o; = 1 and
o = —f = 1 and o; = 1, the SCFDM relations
for odd and even derivatives can be obtained in a
uniform grid respectively. For these relations, the plots
of modified wave numbers for the first and second
derivatives approximation of the SCFDM using Fourier
analysis are given in Figures 1 and 2.
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Figure 1. Variations of modified wave number for the first
derivative approximation for SCFDM with o; = 1.
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Figure 2. Variations of modified wave number for the
second derivative approximation for SCFDM with o; = 1

Numerical Solution

A sixth-order SCFDM formulation for nonuniform grid
points has been used to compute the basic flow and
the PSE equations. Sixth-order SCFDM formulation
for each variable has four relations, one of them is the
basic equation and the others are auxiliary equations.
In these sets of equations, there are five unknowns
L " £ where (') denotes the derivative.
The governing equation is needed to close the system
and a block tridiagonal system is obtained with a block
size 5 X 5.

Basic Flow Computation

By linearizing the basic flow equation (4) and SCEFDM
relations and using the Newton method, a block tridi-
agonal system is obtained which can be solved by the
Thomas algorithm. The convergence is quick, and is
less than 10 iterations for tolerance of 10712,

PSE Computation

Numerical solution to PSE equations needs to dis-
cretize equations (6) and (14) in both streamwise (z)
and wall normal (y) directions. In the streamwise
direction, the first-order backward difference scheme
is used. In the wall normal direction, the sixth-order
SCFDM is employed. For linear PSE, the system of
differential equations (6) can be rewritten as below
by using the first-order backward difference scheme in
streamwise direction:

(L@ + 50600 ) ] = M), (20)

in which Az is the stepsize in the z-direction. In
equation (20) there are four unknowns and by using
a sixth-order SCFDM formulation in y-direction for
each unknown, twenty equations are obtained (sixteen
SCEFDM relations and four governing equations).

These equations require twenty boundary condi-
tions. Equations (11) and (12) provide six boundary
conditions. An additional boundary condition is ob-
tained using the derivative of continuity equation at the
wall. Other boundary conditions are obtained by using
forward and backward SCFDM relations at boundaries.
The above system of equations along with the twenty
boundary conditions give a block tridiagonal system of
equations with a block size of 20 x 20.

For nonlinear PSE, the above equations can be
used for each mode (n, k).

Initial Conditions

The initial conditions for the present computation
are obtained by solving the Orr-Sommerfeld equa-
tions at the corresponding Reynolds number R, and
nondimensional frequency F (wr/U2 x 10%). The
Orr-Sommerfeld equations in primitive forms can be
obtained from the linear PSE equations by setting %
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derivatives and V, equal to zero and can also be solved
using super compact method.

The Orr-Sommerfeld eigenfunctions are normal-
ized such that:

ul o = (2001 = 4°, (21)
and
1 [ T (a)
_ 1 — °
Phs = tan {R @ }max = (Phs)”, (22)

where A° and (Phs)® are initial amplitude and phase
which are input parameters to the code.

RESULTS AND DISCUSSION
Here, both linear and nonlinear computations are pre-
sented for two cases. All calculations were initiated at
R, = 400, where the shape function and corresponding
wave number for the TS wave are provided by the Orr-
Sommerfeld (linear quasi-parallel) solutions. All the
present computations are performed on PC.

2-D Linear and Nonlinear PSE

The first test case is the evolution of a two-dimensional
TS fundamental wave of frequency F' = 86 using the
linear and nonlinear PSE. The initial amplitude level
of the fundamental mode (1F) is chosen to be A, =
0.25% based on w! ... For nonlinear calculations, three
Fourier components (N = 2, K = 0) with frequencies
OF, 1F, 2F are used. The stepsize employed in the
downstream marching procedure is Az = 10 for both
the linear and nonlinear PSE. The results are obtained
in the interval Re = 400 to Re = 1000. Figure 3 shows

the amplitude curves based on u, .. versus Reynolds

number Re = U é(x)/v = \/Usx/v = /Re, for the

0.03 T T T T T

I

Bertolotth Results
Present Computation
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fundamental mode (1F) and its first harmonic (2F).
The upper curve is the amplitude of the TS wave and
the lower one is the amplitude of the 2F harmonic. This
figure also shows the TS amplitude curve using linear
PSE which compares very well with the Bertolotti
results [3]. The present results for nonlinear PSE
computations are in good agreement with those of
Bertolotti [3] and DNS computed by Bertolotti et
al. [5]. The differences between the present solutions
and those of the Bertolotti results [3] are due to
different approximations used in PSE formulation.
Bertolotti used stream function formulation and solved
the resulting equation using the spectral method. Here,
the primitive form is used and is numerically solved by
the super compact method. For the nonlinear PSE,
the velocity profiles of w’ for the MFD wave (OF),
the TS wave (1F) and the first harmonic wave are
shown in Figure 4 at Re = 796. These profiles agree
very well with the DNS results by Bertolotti et al. [5].
The present computations for nonlinear PSE are also
in good agreement with those of DNS computed by
Joslin et al. [13], but for clarity these comparisons are
not shown in the figures.

3-D Nonlinear PSE

There are different routes to transition depending on
the initial conditions. The PSE code developed here
can be used all the way to transition for both fun-
damental (K-type) and subharmonic (H-type) break-
down. The most dangerous route is expected to be a
three-dimensional subharmonic mode interaction. To
demonstrate the ability of the PSE in predicting the
onset of transition, a nonlinear interaction is considered
between a TS fundamental wave (mode (2,0)) 2F =
124, and a pair of subharmonic oblique waves ((1,1)
and (1,-1) modes) for conditions of Kachanov and
Levchenko experiment [14]. The initial amplitudes of
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Figure 3. Comparison of amplitudes based on ul,,, versus
Reynolds number for the TS wave I' = 86 using the linear
and nonlinear PSE.

Figure 4. Comparison of velocity profiles of v’ for various
modes at Re = 796 and I' = 86. Circles denote results from
DNS simulation by Bertolotti et al. [5].
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Figure 5. Comparison of amplitudes based on u,,,, versus
Reynolds number for subharmonic breakdown (2F = 124
and 8 = 0.14). Dots denote experimental data.

the TS wave and the subharmonic wave are chosen
A5y = 0.46% and A7, = 0.0035% based on uj,,
respectively. The spanwise wave number of the sub-
harmonic mode is fixed at § = 0.14. The stepsize
for the marching procedure is Az = 15. The solution
is obtained with Fourier series truncated to N = 2,
and K = 1, and extended from Re = 400 to Re =
720. To investigate the effect of initial amplitude of
subharmonic mode on the solution, the results are
also presented for A7, = 0.01%. For subharmonic
breakdown, based on initial amplitudes of subharmonic
mode we have A? | = 0.0035%,0.01%. Figure 5 shows
the PSE results for the amplitudes of three modes (0,0),
(1,1) and (2,0) based on ul,,, together with experi-
mental data for H-type breakdown. Amplitudes were
measured at = 1.3. The agreement is remarkable
for the TS wave (2,0). The amplitude curve for the
subharmonic mode with initial amplitude A} | = 0.01%
is in better agreement than A}, = 0.0035%. The
results demonstrate that the solution depends on the
initial amplitude of subharmonic mode only in the
transition region (Re > 630) where the MFD mode
rapidly rises thereafter. The velocity profiles of v for
three modes at Re=608 for A}, = 0.01% are shown
in Figure 6. Good agreement in the amplitude profiles
are found between the present results and the DNS
computed by Fasel et al. [15] and also the experimental
data especially for the TS wave. The differences
between the PSE and the experimental results for sub-
harmonic mode may result from the initial conditions
which are provided by the Orr-Sommerfeld equations.
Although not shown here, the present solutions have
been compared with those of DNS computed by Joslin
et al. [13] and have shown good agreement. Figure 7
presents the variations of nondimensional displacement
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Figure 6. Comparison of velocity profiles of u' for various
modes at Re = 608 and 2F = 124. Circles denote DNS

results by Fasel et al. [15] and dots are experimental data.

thickness versus Reynolds number for the subharmonic
breakdown. This figure shows the results of unper-
turbed and perturbed flows. As shown in this figure,
near the onset of transition, the displacement thickness
originally increases very little and then decreases.
Figure 8 presents the variations of nondimensional
skin friction coefficient versus Reynolds number for the
subharmonic breakdown. The skin friction coefficient
calculated by the nonlinear PSE has a minimum at
Re = 670 for A7; = 0.0035% and is shifted back
to Re = 650 for A}, = 0.01%. The figure also
shows comparison of the results with those obtained
by fourth-order compact method [17], which indicates
the accuracy of the present computation. The rise of

35 T T T T
Laminar Flow

3905 Nonlinear PSE, AJ,=0.0035%
Nonlinear PSE, A7 ,=0.01%

15 1 1 1 ]
) 400 500 B00 700

Re

Figure 7. Variation of nondimensional displacement thick-
ness versus Reynolds number for subharmonic breakdown.
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Figure 8. Comparison of nondimensional skin friction
coefficient versus Reynolds number for subharmonic break-
down. Circles denote 4"™-order Compact method results by
Esfahanian et al. [17].

skin friction due to the MFD indicates the onset of
transition in the sense of operational definition.

Calculation of the CPU time for different sim-
ulations of the linear and nonlinear PSE equations
using super compact scheme shows that the developed
code is computationally very efficient. For example
the computational cost of the 3-D nonlinear PSE (with
200 grid points), which is the most difficult case, takes
only 74 seconds on an ordinary personal computer (P4,
3Ghz). Furthermore, the comparison of computational
cost of the sixth-order super compact and fourth-order
compact [17] methods, shows that the super compact is
3 times more expensive than the fourth-order compact
scheme.

CONCLUSIONS
The stability analysis of the Blasius boundary layers on
a flat plate has been studied using linear and nonlinear
PSE. Both linear and nonlinear PSE equations have
been solved using super compact method and primitive
variables. The agreement of the present results with
the previous works, the direct numerical solutions, and
the experiment is very good. The linear and the
nonlinear results show that the PSE approach is a
powerful tool for the study of boundary layer stability
and prediction of transition location.
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