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Numerical Simulation of Scaling Effect on Bubble

Dynamics in a Turbulent Flow around a Hydrofoil

M. Mahdi!, M. Shams?, R. Ebrahimi?

A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion
in turbulent flow is developed. The flow is analyzed in the Eulerian reference
frame while the bubble motion is simulated in the Lagrangian one. Finite
volume scheme is used, and SIMPLEC algorithm is utilized for the pressure
and velocity linkage. The Reynolds stresses are modeled by the RSTM model of
Launder. Upwind scheme is used to model convective fluzes. The Guassian Fil-
ter White Noise is incorporated to simulate the turbulent fluctuation velocities.
The bubble diameter is found by the use of Rayleigh-Plesset equation. Various
forces in the equation of motion of the bubble are considered. The Buoyancy,
Saffman lift, drag, pressure, and change of volume forces are carefully applied.
The effects of all of these forces on bubble path are also examined. The bubbles
are created in the low pressure zones, and then traced in the flow field. It
s observed that the bubble diameter is highly dependent on the mean stream
pressure, and its location. The results are compared with the other published
works, and have an acceptable accuracy.

INTRODUCTION
In the liquid flow, cavitation generally occurs if the
pressure in certain locations drops below the vapor
pressure and consequently the negative pressure is
relieved by the formation of gas-filled or gas and
vapor-filled cavities. Cavitation occurs by the sudden
expansion and the volumetric oscillation of bubble
nuclei in the water due to the ambient pressure change.
The size of bubble nuclei is in the order of O(10
um) [1]. Formation and collapse of bubble in lig-
uids are used in many technical applications such as
lithotripsy,ultrasonic cleaning, bubble chambers, and
laser surgery [2]. Bubbledynamics has been the subject
of intensive theoretical and experimental studies since
Lord Raleigh (1917) found the well-known analytic
solution to this problem for inviscid liquids. The
advanced theory of cavitation was developed by Plesset
(1949), who found the differential Rayleigh — Plesset
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(RP) equation for the bubble radius [3]. The RP
equation described the dynamics of a spherical void
or gas bubble in viscous liquids, and is also used
as a first approximation in more complex problems
such as cavitation near solid boundaries. Cavitation
could be observed in a wide variety of propulsion and
power systems like pumps, nozzles, injection, marine
propellers, hydrofoils and underwater bodies.

Two-phase flow could be analyzed as two fluids
in the Fulerian/Eulerian approach, or as a contin-
uum phase and another bubble phase in the Eule-
rian/Lagrangian or trajectory approach. The bub-
ble equation of motion is solved simultaneously with
the RP equation to determine its trajectory (Eule-
rian/Lagrangian method) [4].

Meyer et al [5] correlated a numerical simulation
of the cavitation on a Schiebe headform. They devel-
oped a computer code to statistically model cavitation
inception, consisting of a numerical solution to the RP
equation coupled to a set of trajectory equations. Using
the code, trajectories and growths were computed for
bubble of varying initial sizes. An off-body distance
was specified along the C, = 0, and the bubble was
free to follow an off-body trajectory. They also showed
that the cavitation inception is sensitive to nuclei
distribution.
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Chahine [6] has pursued a different approach to
the study of dynamics of traveling cavitation inception
bubbles using inviscid potential flow, but including
the modifications of the flow by the nucleus, and
allowing the nucleus to deform. These calculations
have provided detailed information about the capture,
growth, and collapse of a single bubble in a Rankine
vortex.

Kevine J. Farrell [7] developed an Eule-
rian/Lagrangian computational procedure for the pre-
diction of the cavitation inception. The trajectories
were computed using Newton's second law with models
for various forces acting on the bubble. The growth was
modeled using RP equation. Cavitation inception data
show that inception indices generally decrease with
increasing velocity, which is contrary to expectations
based on the increased flux of nuclei to the minimum
pressure region.

Can F. Delate and et al. [8] consider quasi-
one-dimensional steady-state cavitating nozzle flows by
taking into account the effect of bubble nucleation. The
nonlinear dynamics of cavitating bubbles is described
by the classical RP equation where a polytropic law
for the partial gas pressure is employed by taking
into account the effect of damping mechanisms by an
effective viscosity.

Zhang and Ahmadi [9] recently computed an
Eulerian-Lagrangian computational model for simu-
lations of gas-liquid-solid flows in three phase slurry
reactors. They used a two-way interaction between
bubble-liquid and particle-liquid. but, they did not
consider the bubble growth in their analysis.

In this research, the bubble dynamics in turbulent
flow around a 2-d hydrofoil of NACAO0015 is analyzed.
The chord length is 115mm. A finite volume code
is used to analyze the flow field and the results were
verified by the experimental data. A numerical code for
bubble motion is developed. An equation is written for
bubble motion in Lagrangian reference frame. Saffman
lift force that is ignored in the previous researches,
is considered, and compared with the other forces in
bubble line movement. The growth was modeled using
the RP equation. The effects of any slip velocity
between the bubble and the carrying liquid are also
considered. GFWN model is used to simulate turbulent
velocity fluctuations. Also, the effect of parameters
such as fluctuating velocity components, cavitation
number, initial radius and the angle of attack on bubble
dynamics is also investigated.

FLOW SIMULATION
Since the flow is turbulent it is important to use an
appropriate turbulence model for evaluating the mean-
flow field. Reynolds stress transport model (RSTM) of
Launder et al [10] is used in this study. This model
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accounts for the evolution of individual turbulence
stress components, and is well suited for handling
anisotropic turbulence stress.

Mean-flow model

For an incompressible fluid flow, the equation of conti-
nuity and balance of momentum for the mean motion
are given as:
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Where @; is the mean velocity, x; is the position, t is
the time, P is the mean pressure, p is the constant mass
density, v is the kinematics viscosity, and R;; = W
is the Reynolds stress tensor. Here, v} = u; — @; is the
fluid fluctuation velocity component.

The RSTM accounts for differential transport
equations for evaluation of the turbulence stress com-
ponents. i.e.
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where the turbulence production terms are defined as:
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With P being the fluctuation kinetic energy produc-
tion. Here v; is the turbulent (eddy) viscosity; and
o =1.0,C; = 1.8,Cy = 0.6 are empirical constants.
The turbulence dissipation rate, €, is computed by the
governing equation:
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In Eq.(2,4), k = Lu/w/ is the fluctuation kinetic energy,
and e is the turbulence dissipation. The values of

constants are [11]:

0¢=13,0% =144,C% =1.92. (5)
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Fluctuating velocity

Dispersion of small particles is strongly affected by the
instantaneous fluctuation fluid velocity. The turbu-
lence fluctuations are random functions of space and
time. In this study, the continuous filter white-noise
(CFWN) model described by Thomson [12] is used
to generate instantaneous fluctuating fluid wvelocity.
Accordingly, the ith component of instantaneous fluid
velocity satisfies the following stochastic equation [13]:
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Here, ﬁ’f is the mean-square of the ith fluctuation
velocity, and the summation convention on the under-
lined indices is suspended. In equation (6), T is the
particle integral time, which is the average time spent
in turbulent eddies along the particle path,
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for small particles that move with the fluid, the particle
integral time may be approximated by the fluid point
Lagrangian integral time Th. The latter is related to
fluctuating kinetic energy and dissipation rate, i.e.

k

T = CL? (8)
with the constant Cp =~ 0.3 (Daly and Harlow [14]).
Therefore,
k
Tl ~ TL ~ 0.3—. (9)
€

In equation (6), (;(t) is a Gaussian vector white
noise random process white spectral intensity 57 given
by:

S5 = S06ij, (10)
where
T

In the numerical simulation, the amplitude of {;(¢) at
every time step is given as:

(12)

where G; is a zero-mean, unit variance independent
Gaussian random number and At is the time step
used in the simulation. FEach entire time sample is
then shifted randomly between 0 to At to generate an
appropriate white-noise time history.

The CFWN simulation technique described here has
several advantages over other available techniques. It
provides correct turbulent intensities and accounts for
the proper time scale of turbulence. More importantly,
the model leads to the correct magnitude of turbulent
diffusivity for fluid point particles. In addition, the
model is convenient to apply and is computationally
efficient.

IMPROVED SPHERICAL BUBBLE
DYNAMICS MODEL
The behavior of spherical bubble in a pressure field
is usually described with a relatively simple bubble
dynamics model known as the Rayleigh — Plesset
equation (Plesset 1948) [15]:
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L 3.,
RR+§R = 7 7

1

; Dy + Dy
where R is the time dependent bubble radius, p is the
liquid density, p, is the vapor pressure, p, is the gas
pressure inside the bubble, p is the ambient pressure
local to the bubble, p is the liquid viscosity, v is the
surface tension. If the gas is assumed to be perfect and
to follow a polytrophic compression relation, then one

has the following relationship between the gas pressure
and the bubble radius:

R 3k
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where p,o and Ry are the initial gas pressure and
bubble radius respectively and is the polytrophic gas
constant. The internal process inside the bubble is
assumed to be isentropic. In equation (13) the bubble
grows principally in response to a change in the ambient
pressure through gaseous expansion, and increase in
the vaporous mass within the bubble. A one way
analysis is adopted and the effect of the bubble on the
liquid is ignored. In addition, equation (13) does not
take into account the effect of any slip velocity between
the bubble and the carrying liquid. To account fo;“
this slip velocity, an additional pressure term M
is added to the classical Rayleigh — Plesset equation
[16,17].
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Virtually all liquids contain some dissolved gas.
Indeed it is virtually impossible to eliminate this gas
from any substantial liquid volume. If the nucleation
bubble contains some gas, then the pressure in the
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bubble is the sum of the partial pressure of this gas, pg,
and the vapor pressure. Hence the equilibrium pressure
in the liquid is:
2y

P=pvtre— 45 (16)
where R is the time dependent bubble radius, p, is the
vapor pressure, p, is the gas pressure inside the bubble,
p is the ambient pressure local to the bubble, v is the
surface tension. In the context of cavitation flow, it is
appropriate to assume that the microbubble of radius
Ry is in equilibrium at ¢ = 0 in the fluid at pressure p
so that:

poozp—pv(Tm)—%~ (17)
0
The general features of solution RP equation under this
initial condition are characteristic of the response of a
bubble as it passes through any low-pressure region.
For the purposes of the present discussion, we
shall consider a steady, single-phase flow of a Newto-
nian liquid of constant density, p, velocity field, U, and
pressure, p. In all such flow it is convenient to define a
reference velocity, U, and p., which are conventionally
the velocity and pressure of the uniform and upstream

flow respectively. The pressure coefficient is defined as:

(T, ) — Poo
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e ey (18)

There will be some locations, xz;,y;, within the
flow where Cp(x;,y;) and p are minimum, and that
value of Cp(z;,y;) will be denoted for convenience by
Cpmin- For a given geometry, Cp(%;,y;) and Cpyin are
functions of Reynolds number in the steady flow. When
the overall pressure is decreased or the flow velocity
is increased, the pressure at some point in the flow
approaches the vapor pressure py, of the liquid at the
reference temperature T.,. In order to characterize this
relationship, it is conventional to define the cavitation
number, o as:

:poo_p\/
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Any flow, whether cavitating or not, has some value of
a. Clearly if ¢ is sufficiently large, single phase liquid
flow will occur. However, as ¢ is reduced, nucleation
will first occur at some particular value of ¢ called the
incipient cavitation number.

BUBBLE MOTION EQUATION
The motion equation of a spherical particle subjected
to the force of gravity in a fluid has been derived
by several prominent scientists such as Basset [17],
Boussinesq [18] and Maxey [19]. Use of numerical
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simulation to study particle dispersion and deposition
in the turbulent flows was reported by Ahmadi [20]
and Shams et al [21]. By considering the forces acting
on the spherical bubble with radius R, the equation of
motion is:

prbdd—U';b = Vi(ps — p)gj + Vs Vp

2 dat  dt 2 dt
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where terms with the subscript b are related to the
bubble and those without a subscript are related to
the carrying fluid. V, and A, are the bubble volume
and projected area, which are equal to %ﬂ'RS and
7w R? respectively. The bubble drag coefficient Cp in
equation (20) can be determined by using the empirical
equation of Hagerman and Morton (1953) [22] :
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The physical meaning of each term in the right hand
side of equation (20) is as follows. The first term is
the buoyancy force. The second term is due to the
pressure gradient in the fluid surrounding the particle.
The third term is the drag force. The fourth term
is the force to accelerate the virtual “added mass”
corresponding fluid. The fifth term is the force due
to the bubble volume variation, and the last term is
the lift force, which is caused by the bubble spin. By
dividing the two sides of equation (20) to pV}, the final
equation is achieved as follows:
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RESULTS

Flow and bubble motion around a 2-D hydrofoil is
investigated. A C type grid is generated in the physical
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Figure 1. Generated grid in the physical domain
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Figure 2. Pressure coefficient for different angle of attacks
in the present numerical simulation and experimental data

[23] for Re = 8 x 10°.

domain and is shown in Figure 1. Grid independency
check is also done here, and the optimum number
of the computational cells is approximately 48000.
“Velocity inlet” type and “fully developed” is used for
the boundary conditions. The grid spacing is suitably
fined in the near wall regions. The first node adjacent
to the wall is located between 50<y™<500, in which yT
is dimensionless distance away from the wall, and +
stands for dimensionless turbulent wall units.
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Figure 3. Instantaneous velocity component at one point
near the outflow in the flow field.

The variation of C, in the chord direction for
different angle of attacks is illustrated in Figure 2. The
flow Reynolds number is Re = 8 x 10°. The present
results are compared with the cavitation tunnel test
data collected by Rapposelli et al [23]. Tremendous
pressure variations in the leading edge of the hydrofoil
are observed.

The velocity fluctuations have a significant effect
on the bubble size and its trajectory. Some of the
previous researches ignored this effect. Here, by using
the CFWN model velocity components are calculated.
Figure 3 shows the instantaneous wvelocity at one
specific point near the outflow in the domain for Re =
8 x 105, a0 = 49,

The corresponding sample trajectory of the bub-
ble with and without fluctuation components are il-
lustrated in Figure 4a. The bubble radius of these two
samples is presented in Figure 4b. Fluctuating velocity
components intensify the variation of bubble diameter
and size. The turbulence intensity directly affects the
velocity fluctuations and consequently the bubble size.

Various forces are considered in this simulation,
and their effect is presented in Figure 5. The initial
condition parameters are Re = 8 x 10° R, = 50um and
a = 4°. Pressure gradient force in the horizontal and
vertical coordinates are shown in Figure 5a, b. It shows
that this force is only significant in the low pressure
regions at the leading edge of the hydrofoil. Because
of the bubble growth at these low pressure regions,
the drag force increases and this effect is presented in
Figure 5c,d. The simulation shows that the Saffman
Lift force is negligible in comparison with other forces
and is shown in Figure 5e. The force due to volume
change is calculated and presented in the Figure 5f.
This force has a significant value especially at the low
pressure regions because of its rapid bubble growth.

The effect of the above mentioned forces on the
bubble radius and trajectory is also examined and
presented in Figure 6. The bubble radius during its
motion at cavitation numbers of 0.98, 0.64, 0.57 is
shown in Figure 6a. DBy decreasing the cavitation
number, a large bubble diameter is observed, i.e. for
o = 0.57 a huge bubble growth at the leading edge
is seen. The bubble size is oscillatory at low pressure
regions because of these mechanisms. While the bubble
radius changes, its trajectory is also affected by these
forces as shown in Figure 6b. According to this
figure, although all bubbles are released for the same
point with the same initial size, their trajectories are
deviating and scattering because of these forces due
to mainly different cavitation numbers. The effect of
initial bubble diameter on its trajectory is illustrated
in Figure 7. Bubbles are released from the Re =
8x10%, 0 = 0.98, and the angle of attack is o = 4. The
initial radius of 25, 50, 75, and 100 micron is examined
here.
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Figure 4. Bubble dynamics at o = 4° for different turbulent intensity: (a) bubble trajectory and (b) bubble radius.

The bubbles are following the same path before
touching the low pressure zone. They will deviate from
the original path due to sharp variations in the leading
edge. The significant force that changes bubble path
is the force due to volume change. For this reason, the
bubble that has a 100 micron radius is colliding with
the wall while the others exit with any collision from
the region.

The effect of angle of attack is also checked here.
Attack angle also has a significant effect on pressure
distribution that is shown in Figure 8a. A zero angle
of attack is used. Two bubbles with the same initial
diameter are released while the cavitation number is
different. The bubbles that have ¢ = 0.68 will reach
the wall. These parameters are also examined with
angle of attack of @ = 6 and are shown in Figure 9.
The fluid flow static pressure is illustrated in Figure
9a. The bubble trajectory is also examined carefully
in the leading edge and is presented in Figure 8b. It is

observed that the bubble is not touching the hydrofoil
wall while it is in the previous figure. The streamlines
and pressure distribution are significantly affected by
the angle of attack

CONCLUSION
The bubble dynamics is analyzed by using an Eulerian-
Lagrangian approach. The effect of various parameters
like fluctuating velocity component, cavitation number,
angle of attack and the bubble initial radius; on
the bubble dynamics is examined. According to the
obtained results, the following conclusions are drawn:

e Drag force, saffman lift, pressure gradient and
buoyancy forces are effecting the bubble movement.
These forces are functions of the bubble position,
the bubble diameter and flow parameters. The force
due to volume change significantly influences bubble
dynamics.
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Figure 5. The variation of various forces during the bubble motion for Re = 8 x 10°, o = 4°. (a) Pressure gradient force

in the X- direction, (b) Pressure gradient force in the Y- direction, (c¢) Drag force in the Y-direction, (d) Drag force in the
X-direction, (e) Saffman lift force and (f) Force due to volume variation.

o The fluctuating velocity components of the fluid e Increasing the angle of attack of the hydrofoil will
have a significant effect on the bubble trajectory. cause a great increase in critical cavitation number
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Figure 7. The effect of initial bubble size on its trajectory
for Re =8 x 10°,0 = 0.98, v = 4.

and consequently the bubble path far away from
hydrofoil.

e The bubble initial radius on entering to the domain
has a direct effect on its path because of the
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dependency of hydrodynamic forces on the bubble
radius.

e By increasing the cavitation number, the maximum
radius of the bubble is decreased.
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