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Transonic Turbulent Flow Computations

on Unstructured Triangular Grids

M.T. Manzari!

The numerical simulation of 2D steady transonic turbulent flow over aerofoil
sections is considered on unstructured triangular grids. The mass-averaged
Navier-Stokes equations are employed, together with the k — w two-equation
turbulence model. The Jameson-Schmidt-Turkel algorithm is used and com-
pared, in terms of accuracy and computational efficiency, with a MUSCL
procedure, based upon Roe’s flur-difference splitting scheme. Both high and
low Reynolds number turbulence models are utilized to represent the sub-layer
region. Simulations involving NACA0012 and RAFE2822 aerofoils are presented

and the results obtained are compared with available experimental data.

INTRODUCTION
Transonic flows are of significant practical importance
in the commercial aircraft industry. Due to the
presence of subsonic and supersonic regions, shocks
and separation zones the numerical simulation of t flow
regime is a challenging task. It is well-known that, in
the simulation of such flows, the predicted lift and drag
are very sensitive to non-physical effects induced by the
physical and numerical approximations employed. This
means that special care must be taken, in the choice of
both the flow algorithm and the turbulence model, if
the resulting flow solver is to be useful for the process
of aerodynamic design. Currently, a valid approach
to simulating practical turbulent flows is the use of
the time-averaged Navier-Stokes equations, along with
a low-order turbulence model. In this respect, two-
equation models appear to satisfy the minimum re-
quirements for a complete model in the sense that they
need no extra information about the turbulence struc-
ture. Although two-equation models have well-known
short-comings, they can produce reasonable results for
a range of transonic flow problems. Among the family
of two-equation turbulence models, the ¥ —w model of
Wileox [1] is attractive in that it produces good results
while retaining simplicity of the implementation. The
model leads to reasonably accurate predictions for two-
dimensional boundary layer flows in the presence of
both adverse and favourable pressure gradients. The
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major weakness of the model is its sensitivity to the
free-stream conditions; however, this drawback can
be remedied by adding some modifications to the
method. Computational efficiency can be increased by
employing wall functions in order to represent the flow
in the regions immediately adjacent to walls. The use
of this approach affects the accuracy of the model and
its ability to capture subtle features of the flow, such
as separation. Nevertheless, the computations may
then be performed on a coarser grid, and the result
is a considerable reduction in the computational cost.
Numerical dissipation is a crucial ingredient of any
compressible flow solver and requires special attention
in turbulent flow simulations. Addition of a small
amount of dissipation to the flow field can result in
major errors, such as delay in separation, which can
decrease the lift of an aerofoil drastically. In this work,
two different algorithms are considered. The first is
the Jameson-Schmidt-Turkel (JST) [2,3] scheme, which
involves a blend of fourth-order and second-order dis-
sipations switched by means of a pressure sensor. This
scheme is sensitive to the dissipation tuning parameters
and the form of the sensor that is employed, and is
especially interesting for its computational efficiency.
The second method employs the Monotone Upstream-
centered Scheme for Conservation Laws (MUSCL)
concept, using Roe’s flux-difference splitting [4,5] as
the basis. The MUSCL scheme has a good record of
achievements in the simulation of compressible flows
[6] and exhibits a robust and reliable approach. This
method has no requirement for tuning parameters, and
proves to be fairly insensitive to the type of limiter



which is employed. The choice of various limiters was
investigated in a previous 1D study and the limiter
used in this paper was proved to be among the best
choices [6]. A detailed comparison of various density
based schemes can be found elsewhee [3]. In this
work, the main goal is to evaluate various combinations
of turbulence models and numerical algorithms, with
the objective of finding a suitable candidate for the
practical 3D flow simulations. The governing equations
for compressible turbulent flows are presented, followed
by a brief description of both the high and the low
Reynolds number £ — w turbulence models. A gen-
eral solution approach based upon the Galerkin finite
element method on unstructured triangular grids is
described and the two solution algorithms used here are
outlined. A number of test cases, involving NACA0012
and RAE2822 aerofoils, are solved and the results are
compared with experimental data.

GOVERNING EQUATIONS

The equations governing unsteady compressible turbu-
lent flow are derived by introducing the Favre (mass)
and conventional time averages into the mass, momen-
tum and energy conservation equations. The mass
average is used for the velocity components and the
total energy, while the conventional time average is
employed for the density and pressure. As a result
of the averaging procedure, the governing equations
are expressed in terms of mean flow variables. In the
k — w model, two differential equations, governing the
variation of the turbulence kinetic energy k and the
turbulence specific dissipation w , are added. The
turbulence viscosity is expressed as a combination of
these two variables.

Basic Conservation Equations

The basic system of conservation equations can be
expressed, in the non-dimensional conservative form,
as:
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for 7,5 = 1,2 . Here all the variables are time-averaged
mean values and the non-dimensionalization has been
based upon the density, velocity, molecular viscosity
of the free-stream and a characteristic length of the
problem. In the above equations ¢ denotes time, x; the
coordinate relative to a Cartesian coordinate system
O x1 2, u; the component of the velocity vector in
direction w;, p the density, p the pressure and 0¢;;
the Kronecker delta. The total energy per unit mass
is defined as E = e + w;u;/2 + k , where e is the
mass-averaged specific internal energy and k& is the
turbulence kinetic energy. The fluid is assumed to be
an ideal gas, with constant specific heat ratio v . The
variation of the molecular dynamic viscosity is obtained
by the Sutherland’s law.

Turbulence Model

In this work, the standard & — w turbulence model is
used. This is one of the most promising two-equation
models in the sense of computational performance.
The idea of using the specific dissipation rate, w dates
back to 1942 when Kolmogorov proposed the first two-
equation models of turbulence. The quantity w is
regarded as the ratio of the rate of dissipation per unit
turbulence kinetic energy. The form of the equation
for w has changed as the & — w model has evolved
over the past five decades. The standard form of the
k —w model was presented by Wilcox [1] and later some
modifications to the model were devised. The Wilcox’s
k — w model has five closure constants which, like all
of the two-equation models, have been introduced in
replacing unknown double and triple correlations with
algebraic expressions involving known turbulence and
mean-flow properties. This model involves solution of
two transport equations, as shown in Eqgs. (1) and
(2), to compute the turbulent viscosity according to
e = pk Re /w . The stress tensor is given by:
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In Eq. (2), q; represents the component of the heat flux
vector that contains both the molecular and turbulent
contributions, that is, the heat flux in direction x; is
modeled as:

-1/ we \ OT
N AT S il 4
%~ Re (Pr * Prt) Oz @

where T' is temperature and Pr and Pr; represent the
molecular and turbulent Prandtl numbers, respectively.
The quantities Dy ; and D, ; contain the effect of both
molecular diffusion and turbulent transport and are
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modelled as:
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The production and dissipation of ¥ and w are modeled
as:
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In the above equations, the closure constants are:
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This model can be integrated down to any solid
boundary and takes into account the molecular viscous
effect in the regions close to a wall, where the molecular
viscosity dominates the eddy viscosity. This type of
model is known as a low Reynolds number model,
in contrast with the high Reynolds number models
which cannot simulate the flow in the viscous sublayer
region. With high Reynolds number models, wall
functions can be employed to represent the solution
in this viscous region. The flow field is then only
modelled up to a certain distance away from the wall,
with the remainder of the flow-field assumed to follow
the specific behaviour imposed by the wall function.

FINITE ELEMENT FORMULATION

The starting point for the development of a finite
element approximate solution procedure is a variational
formulation of the problem. To achieve this, consider
a trial function space T and a weighting function space
W, which are initially defined to consist of all suitably
smooth functions. In addition, all functions in the set T
will satisfy the initial condition of the problem. A weak
variational formulation of the problem is then: find U
in T, satisfying the problem boundary conditions, such
that for all W in W and for all ¢ > tgy:
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here, n; represents the z; -component of the unit
outward normal to boundary I' . The domain  is
discretized into a general assembly of linear triangular

elements, with the nodes numbered from 1 to p .
Subsets T? and WP of the trial and weighting function
sets T and W are then defined and the standard finite
element shape functions are used. An approximate
solution to the variational problem can be obtained by
the Galerkin method. The integrals appearing in the
Galerkin formulation can be evaluated in the standard
finite element form by looping over elements and
boundary edges and summing individual elements and
boundary edge contributions. An alternative approach
uses an edge-based data structure for the unstructured
mesh [7,8]. The edge-based data structure will be more
attractive when the 3D extension is attempted as it can
lead to significant reductions in both the CPU time and
memory requirements. In terms of the edge-based data
structure, the finite element formulation can be written
as:
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where the edge s in the mesh joins nodes I and
I, and J; and Jy are the boundary nodes which are
connected to boundary node I . The C7; and Dy are
the weight coefficients [6]. The bracketed terms are
only non-zero when node I is located on a boundary.
The matrix M appearing on the left hand side of the
above equation denotes the finite element consistent
mass matrix. For the steady flow analysis which is of
interest here, this matrix is replaced by the lumped
(diagonal) mass matrix My, which allows the use of
truly explicit time marching procedures.

Numerical Dissipation

There are a variety of methods of achieving stabiliza-
tion by adding numerical dissipation. Two approaches
are followed, which lead to stable schemes with a
discontinuity capturing capability, based upon the

Figure 1. Dummy nodes and corresponding elements.



replacement of the actual flux function in the above
equation by a consistent numerical flux function. In
this work, two schemes are investigated. The first
scheme is a higher-order upwind (MUSCL) algorithm
based on the well-known Roe’s flux-difference splitting
method. In order to implement the method in a FEM
methodology, a 1D stencil as shown in Figure 1 is used.
The interface values required for the Roe averaging is
obtained for each edge I, . Here a limiter in the form
of:

2(y? + 2¢%) + y(22° + €2)
222 — zy + 292 + 3e2
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is used where €? is a small constant. A forward
difference approximation is employed to construct the
time marching method.

The second method is a popular numerical dissi-
pation method due to Jameson et al [2]. The method
is computationally efficient and its implementation is
fairly easy. In this method, a three stage Runge-Kutta
time stepping scheme in the form of:
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is used to advance the solution from time level ¢t = ¢,

to time level t = t,41 = t, + At . Here, oy = 0.6,
as = 0.6, ag = 1.0 and ng_l) is the right hand side
of Eq. (9) and Dy is the standard artificial dissipation
of Jameson’s method:
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where the second order operator is approximated
according to:

mr
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Here A is the maximum eigen-value of the Jacobian ma-
trix {; OF7/0U in absolute value, where | = (I1,12,13)
is the unit vector in the direction of the edge I'lg . The

parameters eﬁl and eg?}i are defined by:
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Where:

Pr=> (pr.—p1) /> (pr. +p1) (15)
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is the nodal value of a pressure switch.
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Figure 2. Plots of grid used for NACAQ0012 aerofoil.

Mesh Generation
The efficient numerical simulation of turbulent flow
problems requires the use of meshes involving highly
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stretched elements close to the solid boundary. The
method used here to generate unstructured meshes in-
volves three separate phases [9]. Firstly, the boundaries
of the computational domain are discretised, with the
nodal points placed according to a user specified mesh
control function. In the second phase, unstructured
layers of highly stretched triangular elements are gen-
erated adjacent to those boundary surface components
which represent solid walls [9]. The height and number
of these layers is specified by the user in such a way
that the boundary layer profile can be adequately
represented. The layers are constructed by generating
points, along boundary normals, and then connecting
these points to form triangular elements. If normals
begin to intersect, the process is locally terminated.
Finally, the remainder of the domain is discretised
using a Delaunay procedure [10].

NUMERICAL RESULTS

Transonic flows over NACA0012 and RAFE2822 aero-
foils are studied. The chosen test cases cover a range of
flow conditions, involving both shocks and separation
zones. The flow conditions for each selected test case
are given in Table 1. Both low-Re and high-Re & — w
models are tested and both MUSCL and JST schemes
are employed. The solution is started from free-stream
conditions for all cases. To account for the effect of
the wind tunnel walls, a corrected angle of attacks
have been used for some cases. No correction in Mach
number or Reynolds number has been imposed.

The specification of the computational grids em-
ployed is given in Table 2. In this table, N, is the
number of nodes, IV, is the number of elements and N,
is the number of nodes on the aerofoil, while ¢ is the
distance of the first layer of grid points from the aerofoil
surface. For the NACAO0012 aerofoil, three different
grids are used: G1, which is suitable for low-Re model
computations, and G2 and G3 which are designed for
high-Re model computations. The grids G4 and G5
are for the RAE2822 aerofoil and are suitable for low-
Re and high-Re calculations respectively. Figures 2

Table 1. Definition of Test Cases

Test Airfoil M Re o
A NACA0012 | 0.75 | 3.8E6 | 2.26
B NACAQ0012 | 0.70 | 9.0E6 | 1.49
C RAE2822 0.73 | 6.5E6 | 2.79

Table 2. Specification of Grids

Grid Airfoil N, N, Ny [
G1 NACA0012 14097 | 27939 205 0.00001
G2 NACA0012 9851 19514 168 0.0001
G3 NACA0012 3831 7426 195 0.001
G4 RAE2822 14180 28083 246 0.00001
G5 RAE2822 6838 13399 246 0.0001
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Figure 3. Plots of grid used for RAE2822 aerofoil.

and 3 show plots of grids used for NACAO0012 and
RAE2822 aerofoils inturn. Table 3 gives information
on the computations performed, detailing the grid, the
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Figure 4. Results obtained for NACAQ012 aerofoil (test case A): (a) Pressur coeflicient: experiment (circle), Low-Re
MUSCL (solid line) and High-Re MUSCL (dashed line), (b) Pressur coefficient: experiment (circle), Low-Re MUSCL
(solid line) and High-Re JST with §=0.0001 (dashed line) and High-Re JST with §=0.001 (dash-dot lines), (c) Skin
friction obtained by Low-Re MUSCL.
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Figure 5. Results obtained for NACAQ0012 aerofoil (test case B): (a) Pressure coeflicient: experiment (circle), Low-Re
MUSCL (solid line), High-Re JST (dashed line), (b) Skin friction obtained by Low-Re MUSCL.
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turbulence model as well as the solution algorithm
employed.

Test Case A

This test case involves a fully attached transonic flow
over a NACAO0012 aerofoil. Details of the computations
performed, designated Al to A5, are given in Table
3. Figure 4 shows the pressure coefficient distribu-
tions obtained with the different combinations of flow
algorithm and low/high-Re turbulence model. It is
seen that the results are in good agreement with the
experimental data [11], with the JST scheme presenting
a sharper shock. It is also interesting to note that
the coarsening of the grid does not cause a noticeable
change in the distribution when wall functions are
employed. In Figure 4, the skin friction distribution
for Al is also shown.

Test Case B

A shock free attached transonic flow over a NACA0012
is the solution of the second problem. The flow condi-
tions are given in Table 1. In Figure 5, the computed
wall pressure coeflicient distributions of B1 and B3 (see
Table 3) are compared with experimental observations
[11]. The result of computation B2 is indistinguishable
from that of B1. The computations are in good
agreement with experimental data. This figure also
shows the skin friction distributions obtained by B1.

Test Case C

In this test case, an attached transonic flow over a
RAE2822 aerofoil is studied. The RAE2822 aerofoil is
especially interesting for its shape and curvature. The
experimental data for this case is known as Case 9 and
is available from [12]. This is a popular test case, and
has been investigated by many researchers. Figure 6

X

(a)

Table 3. Specification of Computations

Result Test | Algorithm | Turbulence Model | Grid
Al A MUSCL Low-Re G1
A2 A JST Low-Re G1
A3 A MUSCL High-Re G2
A4 A JST High-Re G2
A5 A JST High-Re G3
B1 B MUSCL Low-Re G1
B2 B JST Low-Re G1
B3 B JST High-Re G3
C1 C MUSCL Low-Re G4
C2 C JST Low-Re G4
C3 C JST High-Re G5

shows the distributions of wall pressure coefficient and
skin friction obtained by C1, C2 and C3 (Table 3).
The overall agreement with experimental data is good,
but the low-Re model tends to predict shocks a little
upstream of their correct location. The computed skin
friction distributions from C1 and C2 are also shown
in Figure 6. When wall functions are used, there is a
considerable under-prediction of skin friction. For this
reason, the skin friction distributions obtained with the
high-Re turbulence model are not shown.

CONCLUSIONS
The simulation of transonic turbulent flow over two
aerofoil types has been considered. In the search
for computationally efficient methods, both the low-
Re and the high-Re & — w turbulence models were
considered, along with the MUSCL and Jameson-
Schmidt-Turkel solution schemes. It has been found
that the high-Re turbulence model is generally accurate
enough to capture the general physics of the flow-field;
however, it does not lead to a reliable skin friction

(b)

Figure 6. Results obtained for RAE2822 aerofoil (test case C): (a) Pressure coefficient: experiment (circle) Low-Re
MUSCL (solid line), Low-Re JST (dashed line), High-Re JST (dot line), (b) Skin friction: experiment (circle), Low-Re

MUSCL (solid line), Low-Re JST (dashed line).



distribution. The low-Re k& — w model gives fairly
accurate skin friction distributions for all the cases
attempted in this work.
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