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Analysis of Laminar Film
Condensation on a Vertical Plate

J. A. Esfahani!, M. Ziaei-Rad?

This paper concerns the condensation phenomenon on a vertical plate. Theoret-
scal background has been explained using some dimensionless parameters, which
help to understand the behavior of this phenomenon in more details. The scale
up of boundary layer theory has been used to transfer the governing equations to
ordinary differential equations. Next, the governing equations have been solved
numerically using the shooting method. A computer program has been developed
to solve these equations and the heat transfer coefficient of a condensate film
for a wide range of physical properties has been obtained, presented graphically,

and compared with other available literatures.

NOMENCLATURE

A Matrix of constant coefficients

Ar Archimedes number

Cp Specific heat at constant pressure

C1,Co Functions of (7, Pr)

¢ Constant

FG Functions of (n,Pr)

g Gravity acceleration, (m/s?)

h Convection coefficient, (W/m?K)

hirg Enthalpy, (J/Kg.K)

Ja Jacob number

k Thermal conductivity, (W/m.K)

L Plate length, (m)

m,n Constant powers

Nu Nusselt number

Pr Prandtl number

Q Discrepancy vector

Q Heat transfer, (J)

T Temperature, (K)

U x-velocity component, (m/s)
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vector of unknown boundary conditions
y-velocity component (m/s)

vertical coordinate

horizontal coordinate

vector of unknown variables

Greek Letters
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Thermal diffusivity, m?/2

Jacobian matrix

nondimensional temperature
similarity parameter

stream function

average variation

variation of a vector

thickness of the condensate layer, m
thickness of the thermal boundary
layer, m

density, Kg/m?

dynamic viscosity, Kg/m.s

kinematic viscosity, m? /s

Subscripts

c

natural scale
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1,7 matrix indices
L plate length
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n Nusselt theory result
s surface
sat saturated
vapor
boundary layer edge
Superscripts
* dimensionless parameter
new/old  value at new/old iteration

INTRODUCTION

When the temperature difference between a fluid and a
wetted plate is sufficiently large, the fluid on the surface
experiences a change of phase. The heat transfer
analysis of film condensation is an important area in the
design and performance of fins in heat exchangers and
other devices. The first reported research and experi-
ment about condensation phenomena was from Nusselt
[1].He simplified the phenomenon by ignoring energy
convection and acceleration terms. After Nusselt,
many researchers continued his study and made some
improvements it. Rohsenow’s formulation contains
the effect of energy convection, but still ignores the
acceleration terms [2]. Sparrow & Gregg expanded
the previous works using boundary layer theory and
similarity method [3]. In this way, they converted the
governing equations to ordinary differential equations
(O.D.E) and explained the properties of condensation
on some parameters such as Jacob and Prandtl number.
They showed that if the Prandtl number is large, the
influences of the inertial terms are not important. The
importance of such results has been well known and
documented in Reference [4], extended by Koh et al.
[5], Koh [6] and Chen [7] and more recently, in [8].
Experimental results on film condensation have been
correlated by Chen et al. [9]. Recently, Mendez et al.
[10] studied the conjugate heat transfer condensation
process of saturated vapor and the effect of longitudinal
heat conduction in the thermal thick wall regime was
taken into account. They used perturbation methods
and the boundary layer description.

The main purpose of the previous works has been
to determine the basic characteristics of condensate
film. In the present work, we try to develop the work
of Sparrow and Gregg, focusing on more details using
dimensionless equations and parameters. To achieve
this aim, some scales have been used and a computer
code using shooting method is developed to calculate
the numerical values. Finally, the results for a wide
range of physical properties are investigated.
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Figure 1. Physical model on coordinate system

MATHEMATICAL CONSIDERATION
The physical problem contains a vertical plate that has
been fixed in a body of pure vapor. The plate surface
temperature is taken to be uniform (T,). The vapor
is at saturation temperature (Te >T.), and thus,
a continuous laminar film of condensate has formed
on the plate, which runs downward. A schematic
of coordinate system on the physical model is shown
in Figure 1. It is also assumed that the velocity of
vapor towards the condensate layer has no effect on
the condensation film, and that viscous dissipation can
be neglected.

Conservation Laws

The wvalid conservation equations for this physical
problem in the above coordinate system can be written
as:

ou  Ov
4+ =2 =0 1
(9a:+8y (1la)
du du d%u
o _— = — Po —_— 1
p<ua$+vay) g(p p)Jruay2 (1b)

ar ar &*T
oC, (u% + Ua—y> =k— (1c)

oy?
where p, is the vapor density, and other properties are
those of condensate.
The equation for shear stress at plate surface is
as follow:

0 ; dy — Ju

pu% / way = —p (9_3/ _
0

We assumed that there is no shear stress on the

boundary layer edge. Also its temperature is the

saturated temperature. No-slip boundary condition
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was applied to the plate and the plate temperature was
set to be constant. Therefore, the boundary conditions
for this problem may be written as:

u=0

Ju _
at y=0¢ v=20 ;atyz&{%y_jf) } (2)
T:TS — Lsat

The thickness of the condensate layer (¢) , which is a
function of x , will be determined later.

Dimensionless Equations

To change the governing equations into dimensionless
form, the dimensionless parameters are defined as
follows:

I T —Teur
U = —1 0" = —: =
UC7 Uc7 T — Tsat
yr=5t =1 3)

Which incorporate the natural scales designated by
subscript ¢ . The balance of heat transfer in condensate
film results in:

Tsa - Ts
ozop’fT = vohyg (4)
Using Jacob number which is defined as:
Tsa - Ts
Ja=(C,=% = (5)
hyq

and substituting from equations (3) and (4) to gov-
erning equations (1), dimensionless forms of equations
are:

du*  ov*

=0 6
ox* * Oy* (6a)
Ja ( out L Out\ &u*

Pr (u ox* v 53/*) =1 Oy*? (6b)
LOT* LOTHN 92T+

Similarity Transformation
In terms of the stream function, (1) which is defined
as:

_ %

_
ox

the governing equations (1) become:

2, 2 _ 3
WY _WIWN _glo=p) OV g
Oy dxdy Oz Oy? p ay?
opor oYorT\ = 9*T
(395~ v 5y) =5 )
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Next, similarity transformation will be used to reduce
the above equations to ordinary differential equations.
First the following scales are defined:

kv 3
uRQ| —— G (n,Pr
(o5 ) S0P
kv K
b, ~ (7) )
S VATEYSF: (
then, the similarity parameters are defined as follows:
n= id = c.y.x_%
ot

_ [9C(p—pn)]?

°= [ vk ©

where ¢; is the thickness of the thermal boundary layer.
Using the definition of ¢ , after some simplifications,
there is:

¥ =4a.caiF (n,Pr) (10)

and dimensionless temperature f is defined as follows:

T- Tsat

6(77) - Ts - Tsat

(11)
Substituting the similarity parameters in equa-

tions (7a) and (7b) one can get to ordinary differential
form of governing equations:

1 . .
—B3FF-2F|+1=0 12
ol )+ (122)

6+3F0=0 (12b)

and the boundary conditions equation (2) becomes:

F=0 .
atn=0¢ F=0 »; atn:ng{g_zoo} (13)
f=1 B

where 75 is the value of 77 , at interface of phases y = 6
To determine the value of 15 , an overall balance of
energy on condensate film can be written as follows:

X 8 8
/k (Z_z;) dx = /puhfgdy+/ pUCp (Tsat —T)dy
0 v=0 0 0

(14)

where the terms in this equation are heat transferred

from condensate to the plate, energy liberated as

latent heat, and energy liberated by sub-cooling of

the condensate, respectively. In terms of similarity

variables, equation (14) can be re-written as:

Ja = Cp (Lo — To) — _3M (15)
hyq 0 (ns)
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where Ja is called Jacob number and 8(ns) and F(ns)
are the values of df/dn and F' at = 1, , respectively
[3]. With respect to the boundary conditions in
equation(13), the treatment of film condensation can
be analyzed by solving the equations (12) and (15).
However, two out of five boundary conditions are
defined at 7 = 15 , and three other at origin.

METHOD OF SOLUTION
First, equations (12) with boundary condition (13)
transferred to a set of ODE in the form of:

Y = AY (16)
and:

YI={F F F 6 ¢}

vioy={0o o FO) 1 60 }

Yi={F1) FQ o 0 61 } (17)

where Y is a vector of five by one and A is a
square matrix. The initial conditions of the governing
O.D.E. equations (12) are not entirely presented at
one point. Thus, the problem we have to solve is
a two-point boundary value problem. There are two
distinct classes of numerical methods for solving such
problems [11]. In this paper, we use the shooting
method to solve equations (12), Where, two values
for the dependent variables at the beginning of the
domain are guessed, then integrated in the ODEs by
the initial value method, here Rung-Kutta, arriving
at the other boundary. Next, a multidimensional root
finding problem was solved to find the adjustment of
the free parameters at the starting point that zeros the
discrepancies at the other boundary point.

At the starting point, zero, there are five start-
ing values Y, to be specified, but subject to three
conditions. Therefore, there are two freely specifiable
starting values. Let us imagine that these freely
specifiable values are the components of a vector V,
which lives in a vector space of dimension two. The
components of V might be exactly the values of certain
“free” components of Y, with the other components
of Y determined by the boundary conditions. Given
a particular V, a particular Y;(0) is thus generated.
It can then be turned into a Y,;(1) by integrating
the ordinary differential equations to 1 as an initial
value problem. Now, at 1, let us define a discrepancy
vector QQ of dimension two, whose components measure
how far these are from satisfying the two boundary
conditions at 1. A vector value of V is found, which
zeros the vector value of Q. This is iteratively (as many
times as required) done by computation in a set of
linear equations:

o]V = —Q (18)
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Figure 2. Temperature profile for various Ja numbers at
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and then adding the correction back,
yrew = yeld 4 5y (19)

In (18), the matrix [a] is a two by two matrix and has
components given by:

0Q;
[ai; = av,

(20)

We might compute these partial derivatives numeri-
cally. For this idea, make a small change on Y, vector
and compute vector Q again. Then, there is:

0Qi Qi (Vi,Va+ AVy) — Q, (V1, Va)
av; AV

(21)

A code has been used to solve the governing
O.D.E. equations (12) in such conditions. In this code



Analysis of Laminar Film Condensation on a Vertical Plate 41

two boundaries on zero are guessed and then corrected
as discussed above. An algorithm of this code is shown
in Figure 2.

RESULTS AND DISCUSSION

Velocity and Temperature Profiles

From non-dimensional equations, it is clear that for
very small Jacob number, the temperature profile is
almost linear, as already presented in Nusselt theory
[1]. However, as Jacob number increases, the linear
approximation of the temperature profile is not true.
Figure 2 shows the temperature profile as a function
of Jacob number. One can clearly see the linear
trend of the temperature profile for low Jacob numbers.
In addition, from non-dimensional equations, one can
conclude that for viscous fluid, i.e. Pr>>1 the velocity
profile is a parabola.

Heat Transfer Coeflicient

Two most important parameters in every heat transfer
problem are the heat transfer coefficient and Nusselt
number. According to the problem, these two parame-
ters may be defined as:

. (o1
Nu, = M _ _k(@y)y:of—x 96 On (22)
Tk T —-T. kT |onoy =0
therefore:
9C, (p—pu) 517 (dO
Ny, = |[————F—— — . 23
" [ 4vk v dn/,—o (23)

The balance between the latent heat transfer and
the lateral heat conduction in the film implies that
[12,13]:

p.hfg.uc.(SQ

k(Tsat _TS)L - O(l) (24)

where u. and L are the reference speed and plate length
respectively. Similarly, the balance of the viscous and
Archimedean buoyancy forces in the equation of motion
require that:

PV,

T o—py CW (25)

Using relations above and the rate of heat transfer
which is as follows:

. k6, L
Q= pucbhyy = 5 (26)
The order of Nusselt number is:
Pr.Arp, ¥
Nuyp = S 27
up, =0 ( Ta ) (27)

where Ar; is Archimedes number that is:

Arp = gLSM (28)
pv
finally, the Nusselt number can be written as:
N Ja %—C(J Pr) (29)
ur, a0 & a,Pr).

On the other hand, using equation (23), one can write:

(ﬁ) = Cl (Ja,PI“) .J{l_% = 02 (Ja/vPr) (30)
dn =0

thus, this parameter has an important rule in explain-
ing the difference of heat transfer rate for high Jacob
number with what reported by Nusselt. Note that for
dn
temperature profile.
On the other hand, we find some results on
plotting the parameter —-%

Ny,
values of m and n, where:

(d(’) = 1 results tend to Nusselt theory, i.e. alinear
n=0
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Figure 4. Variation of average Nusselt versus Ja number
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Nu Nup,
Nu,,

-

(p=p) Ly, | T
0.943 [gyg(ﬁu_m ]

(0.68 + J%) N (Z—f})nzo (31)

In this relation, Nu,, is the original relation presented
by Nusselt theory [1]. In Figure 3 this parameter is
presented for m=1 and n=1/3, where the power of 1/3
is like forced convection for high Pr. The results for
Pr=10 and 100 coincide. Furthermore, we see that for
m=1, variation of n has no effect on the results, but for
m=-1, by increasing in n from 1/7 to 1, the bottom of
lines in plots merge together.

Figure 4 depicted relative Nusselt number for
different values of Ja and Pr. It can be seen that the
Nusselt theory is acceptable for low Jacob numbers at
all Prandtl numbers. The results were also compared
with similarity method of Sparrow and Gregg [3]
presented for low Pr numbers. When Jacob number
increases, the results diverge from the Nusselt theory.
These divergences are from level one downward at
low Pr and upward for high Pr. One can conclude
a resulting profile at Pr=100 which can be used for
Pr/Ja<0.1.

A plot of local heat transfer is also given in
Figure 5 for Pr=1. The agreement between our results
and those of Sparrow and Gregg [3] is excellent. Their
calculation technique, utilizing the similarity method,
is thus shown to be completely satisfactory for Pr=1.

CONCLUSION
A computer program has been developed to solve the
condensation phenomenon on a vertical plate. A heat
transfer coefficient of a condensate film for a wide range
of physical properties has been obtained, presented
graphically, and discussed. Based on this model the
following conclusions can be drawn:

e The Nusselt theory is acceptable for low Jacob
numbers at all Prandtl numbers.

¢ When Jacob number increases, the results diverge
from the Nusselt theory.

e These divergences are from level one downward at
low Pr and upward for high Pr.
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e Results for high Pr (Pr=100) can be used for
Pr/Ja<0.1.

o Results for low Pr (Pr=0.01) can be suitable for low
Ja (Ja<0.1).
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