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Minimum Fuel Trajectory in

a 3/D Time Scheduled Climb

S. M. Malaek!, M. A. Marzaabaadi’ and S. H. Sadati?

A mathematical solution to time-scheduled climb with minimum fuel consump-
tion is presented. The desired final conditions for climb phase are obtained
by successive correction of control variables. Aircraft equations of motion are
developed based on a point-mass model. The optimality conditions are obtained
from Pontryagain’s Minimum Principle (PMP). Control variables in the math
model consists of the aircraft load factor and its bank angle which both appear
in a nonlinear form in the equations of motion, and the throttle setting, which
1s assumed to vary linearly. Results are computed numerically using Multiple
Shooting Method (MSM) and consist of bang-bang control actions for the throttle

setting.
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INTRODUCTION
With ever increasing demand for air transportation and
the existing limitations for the current air routes in
addition to the increasing cost of the airport facilities,
a new strategy to efficiently use the existing facilities
is a must. Comparing to the so-called “Free Flight
Concept” one could think of an alternative named as
“Fully Scheduled Flight (FF'SF)”. In this approach, a
specific amount of time is assigned to each and every
phase of the aircraft mission such as climb, cruise
or descent. Following this approach, the flight plan
carries the usual information regarding the mission
as well as a duration tag(DUT) attached to each leg
of the mission that shows the time during which the
associated mission leg must be carried out. Obviously,
DUT must carry some suitable factor of safety based
on aircraft type, the geographical characteristics of the
region as well as local climatic conditions. As it is
known, except for charter and military, all commerical
aircraft are subject to a pre advertised schedule for
their departure(take-off) and arrivals(landing). How-
ever, the current practice only emphasizes on the
terminal phases of the flight; that is departure and
destination airports. It is therefore, immaterial how
the aircraft flies in between. This lack of interest can
simply lead to some conflicts among aircrafts interested
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to fly in a same corridor and it is the intent of FSF to
prevent such conflicts during a mission.

To have a complete FSF, one needs to analyze
each leg of the flight independently, among which the
climb is considered to be the most complicated one due
to the changes in the altitude and the resulting effects
on the engine performance and drag forces. In this
paper a mathematical procedure to solve the problem
of time scheduled climb has been presented and for a
given aircraft the trajectory that renders the minimum
fuel consumption [1] is found for a general climb in
the 3/D space. The objective of the mathematical
solution is to find velocity, heading angle, flight path
angle and altitude in every time step to make sure
that the climbing part of the mission is carried out
in the given time. Once the trajectory is determined,
a specific control system is needed to have the aircraft
follow the resulted trajectory.

To make the problem more attractive and con-
sidering the fact that different climbing trajectories
could be followed in the same given time, a new
constraint might be added to the problem. The
trajectory of interest here is the one that delivers the
least consumption of fuel. The problem of minimum
fuel consumption in a vertical plane (2/D) has already
been solved analytically [2]. However, in a three-
dimensional climb, such as turning climb, no general
procedure has yet been developed. On the other hand,
to have a minimum fuel climb trajectory, working in
a 3/D space as far as practical flights are concerned is
necessary. This is due to the fact that a general air
routes does not necessarily coincide with the direction
of the runway and the aircraft is required to maneuver
to get aligned with the air route (Figure (1)).

In this manuscript Pontryagain’s Minimum Prin-
ciple (PMP). [3,4] is applied to find the best trajectory
that minimizes fuel consumption for an aircraft in a
climbing condition. State variables are velocity, flight
path angle, heading angle, altitude, and range, cross
range and weight of the fuel consumed during climb.
Control variables are load factor, throttle setting ( 1 )
and the aircraft bank angle. Selected throttle setting,
which is assumed to vary linearly is subjected to the
following condition: 7, <7 < 1.0

Obviously, n = 1.0 shows that throttle is set
to its maximum continuous thrust. This parameter
could also be examined to find whether the resulted
trajectory is a feasible one or not. For example, if
a trajectory is found in which » = 1.0 in all time
steps, then this trajectory cannot be considered as an
acceptable solution.

EQUATIONS OF MOTION
A 3-D model of the aircraft, assuming all of its mass
to be concentrated at its center of gravity has been
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considered. It is further assumed that all forces and
moments are acting at the aircraft C.G position. By
these assumptions, the equations of motion can be
written as [6,7]:

V= i(77T—D0 —n?D;) — gsiny (1)
w

.9

A= Z(ncosu— cosy) (2)
v

X = VCOM(H sin p1) (3)

h=Vsiny 4

& =V cosycosx (3)

7y =V cosysiny (6)

Wr = —nQ(M, h) (7

Q(M,h) =T max(M, h)yC(M,h)

While, g is the gravitational acceleration constant and
air density p(h) and speed of sound a(h) are assumed
to have the following relationship [§]:

p(h) = po(1 — 6.873E — 6)*26 (8)

a(h) = 49.02y/Temp (9)

where, Temp = 518.67 — .003565/, then the Mach
number is given by M = V/a(h).
Moreover, maximum thrust 7', and specific fuel

consumption C are assumed to be known functions of
Mach number (M) and altitude (h), as follows:

T(M,h) =3(c1 + c2M + cs M? + caM?) (10)

C(M,h) = (dy + doM + dsM?* + dyM?) (11)

where all constants C; through Cy and d; through dy
are found based on the engine performance curves [12]
based on tables1.

It is further assumed that general quadratic drag
polar form is applicable, then:

D=Dy+ n2D¢ (12)
where:

n =%, Dy =qSCq, ,Dz':kq—ng
COST FUNCTION & BOUNDARY
CONDITIONS
To find the fuel optimal climb trajectory in its mathe-

matical form, one needs to minimize function I [9, 3],
defined as:

I(“»U»M) = _WF(tf) (13)
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Figure 1. Geometric discribtion of problem

Table 1. Polynomial Coefficients for the Engine Model of It is noted that, the final time ¢; is a known value,

Aircraft which is defined by the mission programmer. Since, it
Coefficients for Thrust Polynomials T(M,h) is desired to climb to a certain condition in the 3/D
H° ht h? h3 space with a prescribed duration known as t;.
Cy | 12894.7 | -0.27547 | -1.18725d-6 | 6.15751d-11
Cy | -11400.2 | 0.415365 | 9.42915d-6 | 5.09385d-10
Cs | 13809.5 | -1.72068 | 7.90316d-5 | -9.63618d-10 ~ OPTIMALITY CONDITIONS
The variational Hamiltonian is formed by adjoining the
Cq | -5635.21 | 1.23973 | -7.11898d-5 | 1.0842d-9 right-hand sides of the system of differential equations
Coefficients for Fuel Flow Polynomials C(M,h) (1) through (7), with the co-state variables or Lagrange
H° ht h2 h3 multipliers of Ay, Ay, Ay, An, Azy Ay, Awy, Then:
di| 0.562089 | 3.79583d-7 | 1.63423d-10 |1.63423d-15
g .
dy| 0.385193 |-3.73133d-6|-7.27028d-10 | 3.76185d-14 H = Ay (5-(nT = Do n2D,) — gsin~)
ds| 0.063731 |1.68353d-6 | 9.25954d-10 | -5.7423d-14 g
dy |-0.0299271 |-1.04468d-5 | 8.38085d-11 | 2.0442d-14 A ({7 (n cos i = cos )
g .
+A n sin
With the boundary conditions given by (14). + An(Vsiny) + Ay (V cosycos x)
+ Ay (V cosysin x) + Awy (=nQ(M, h)) (15)

h(
2(0) = x¢
y(0) = yo

(14)

The co-state differential equations are given by:

Ay = —/\v(%(ﬂTv — Do, —1°Dyy,))

gnsin
V2cosy

g
VW(ncos,u —co87y) + Ax
— Ansiny — A, cosycosy

— Ay cosysinx + A (TCy + CTy)

+A

(16)
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. si
Ay = Aygcosy — /\Vg 2
v
gn sin psiny
— N F———FF— AV cos
X VecosZny h i
+ Az Vsinycosx + Ay V sinysin (1n
;\x = AV cosysiny — A,V cosycosx (18)
; g
A= =Av (37 (0T — Do, — n’Dy,))
+ /\WFU(TOh + CTy) (19)
A =0 (20)
Ay =0 (21)
Aw, =0 (22)

As can be noticed the problem to find the fuel
optimal trajectory is a two-point boundary value prob-
lem (TPBVP) with seven states. At the initial point,
all seven states are specified and the associated co-
states are free to change, whereas, at the final point in
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time, the values of z,y, Wr are free and the remaining
four states are specified. Thus, at the final time all
co-states are free except for Ay, , which is specified
by the transversality condition. At the final time, the
transversality condition requires that Ay, (t;) = —1
Using the PMP, the control vector U can be determined
as:

U = arg[min H(U)] (23a)
A necessary condition for unconstrained components of
U that satisfy the PMP is:

0H
u
Substituting Eq. (15) in Eq. (23-b) with the compo-
nents of U as n,n and p yields:

0 (23b)

OH 2gnD; gcos i gsinp

e =0 (24
on Av W Ay v Ax V cosy (24)
OH gT

OH gnsin j gn cos [t

- =0 26
o A Vv *V cosy (26)

Equation (24) and (25) can be solved simultaneously
to obtain the controllers n and p as:

W 5 Sin
n Ny DV (A cos p + P ) (27)
A
— tan~! X 28
p= () (28)

However, Eq.(25) does not yield the control  because it
appears linearly in the expression for the Hamiltonian
(15). In order to determine the control 7, the switching
function S is defined as:

T
S = AVQW AW, CT (29)

The control 7 must be chosen so as to minimize the
Hamiltonian (13). However, since, 7 is a bounded
parameter, the throttle control law derived from the
PMP (23-a) can be stated as:

If S >0, then 7 = Bmin (30a)
If S<0, then y=1.0
If S =0, (singular control) (30b)

The generalized Legender-Clebsch [10] condition states
that:

O*H
on2

29D;

_/\VV >0 (31)

This must be applied to the non-singular control n.
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CASE STUDY

To show the effectivenes of the current approach, we
show how one can find an optimal climb trajectory,
for a B-727 that is scheduled to climb from S/L to an
air corridor in 15000-ft in 14 minutes. The direction
of the air corridor makes a 30-degree angle with the
direction of the runway. Therefore, the aircraft is
expected to perform a turning climb. To simplify
the problem, it is further assumed that the aircraft
thrust function varies between 0.65 and the maximum
continuous value allowed by the engine manufacturer
data. Obviously, the minimum time to reach to the
desired altitude of 15000 feet happens while using
the maximum continuous thrust (i.e.: n =1.0) on all
engines for the whole duration of the climb. This
leads to duration of climb equal to 640.0 seconds (10.7
minutes). Since this value is less than 14.0 minutes,
then an optimal solution might exist for the specified
problem.

As described earlier, applying PMP to the flight-
path optimization problem results in a nonlinear TP-
BVP where some of the boundary conditions are known
at one boundary and some are known at the other
boundary. Since, the mathematical formulation is
highly non-linear; MSM was used to find the optimal
climb trajectory. The basic idea of MSM is to reduce
the boundary-value problem at hand to a series of m
initial-value problems. The number of initial value
problems depends on the nature of the problem at
hand. In the case of B-727 in climbing condition
one can express the problem as the following: For
7 = 1,..,m — 1, find the numerical solution of the
initial-value problems given by:

Z(0) = [F(t.2(0] £ ¢ <t (32)

With z(t;) = Z;. MSM requires fixed subdivisions for
the time interval, which has to be chosen by the user,
that is:

O:t1<t2<...<tm:tf
initial data for the variables z; at the time ¢; have to be
guessed. Assuming the initial guess Z](-O) for the vector
z(t;); let z(t;¢;, Z;) denote the solution of the initial-
value problem given by (32) in the interval of [t;,t;41] ,
then, a trajectory z(t) is a solution to the above multi-
point boundary-value problem if and only if the vector
Z=(Z1,...Zm-1)T is a zero of F(Z) = 0. [3].

Here, the components of I'(2) including the con-
tinuity or matching conditions are defined as:
Fj(Zl, ...,Zm_l) = Z(tj+1;tj,Zj)—Zj+1, 1 S j S m—2
and the boundary conditions are:
Fo_1(Zy,....Zm—1) = [R(Z1, Zm—1)] € R
with:
R(Zl,Zm_l) = [Ti(Zl,Z(tm;tm_l,Zm_l))] and i =
1,...,nle R™
A zero of the above system of nonlinear equations is
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determined by a modified Newton method [10,11]. The
following features characterize the modified Newton
method used here:
1-The Jacobean matrix is approximated via either
numerical differentiation or an appropriate Broyden
update [10,11].
2-The Newton method is based on a relaxation strat-
egy, where in each iteration the solution of the system
of linear equations is via Householder transformations.
Taking into account the sparse structure of the coef-
ficient matrix, the latter is just the scaled Jacobean
matrix [10,11].
3-The integration method used here for the numerical
solution of the initial-value problems is the well-known
“Gragg-Bulirsch-Stoer [11] extrapolation method”.
Results of fuel optimal climb trajectory for the
selected B-727 is presented in Figure.(2) through (8).
The adjoin variables Ay, , A, Ay, A, which are respon-
sible for the determination of the exteremal controls,
are shown in Figs. 12-15. Finally, the controls are
shown in Figs. 9-11.

DISCUSSION

This paper present a mathematical procedure to find
an optimal climb trajectory during which the fuel
consumption is a minimum. All associated optimal
controls computed by solving multi point boundary
value problems derived based on variational calculus.
Since the throttle setting was assumed to follow a
linear model, the optimal switching structure had to
be found. In the case at hand, this was found to be
a bang-bang strategy with one switching point. More
investigation shows that the optimal trajectory does
not contain singular sub-arcs. Moreover, the resulted
bang-bang solution could be shown to be a locally
optimal one [4]. More investigations by the authors
show that the reduction in fuel consumption in the
climb phase is close to %18 which is a considerable
saving. The final comment regarding the theoret-
ical results of the optimal theory is the feasibility
of commands. Considering the practical limitations
dictated by the hardwares involved, one might use
suitable filters to choose the most appropriate history
for controller commands. Obviously, in such a case the
optimal solution for scheduled climb would change to
a near optimum solution.
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