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Investigation of Three-Dimensional
Turbulent Cavity Flow Using
Large Eddy Simulation Approach

Mohammad Taeibi-Rahni', Mahdi Ramezanizadeh®

Large eddy simulation (LES) of an incompressible flow in a three-
dimensional cavity at different Reynolds numbers including 3,200 and 10,000
are performed using Smagorinsky subgrid scale (SGS) model. Our compu-
tational methodologies include finite volume method using unsteady SIMPLE
algorithm, employing a non-uniform staggered grid. All terms in the Navier-
Stokes equation were discretized using Power-Law scheme. Here, the mean
and root-mean-square (rms) velocities are shown in horizontal, vertical and
spanwise coordinates passed through the center of the cavity and are compared
with the experimental results of Prasad and Koseff (1989). Also, the ratios of
turbulent viscosities to kinematic viscosity are calculated and the position of
the mazimum ratio is determined. Although, the Smagorinsky model does not
work well near the walls, this comparison shows reasonably good agreements
and it s able to resolve the dynamically significant scales of the flow within the

approrimations.

INTRODUCTION
Turbulence is a phenomenon that occurs frequently in
nature; it has, therefore, been the subject of study
for over one hundred years [1]. Most engineering
and environmental flows are turbulent, and occur in
geometrically complex domains. In direct numerical
simulation (DNS) of the Navier-Stokes (NS) equation,
the numerical resolution is sufficiently fine in order to
resolve all scales of motion carrying significant energy.
It is well known that such resolution requirements make
DNS prohibitively expensive for most applications,
and it is restricted to low and moderate Reynolds
number flows. On the other hand, the Reynolds
averaged Navier-Stokes (RANS) approach, which is
much cheaper computationally, uses non-universal clo-
sure models. An intermediate approach is large eddy
simulation (LES), where one only seeks to resolve those
eddies that are large enough to contain information
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about the geometry and the dynamics of a specific
problem under consideration. LES regards all flow
structures on smaller scales ‘Universal’, following the
point view of Kolmogorov [2].

The application of LES to turbulent flows consists
of three separate steps. First, a filtering operation is
performed on the Navier-Stokes equations to remove
small spatial scales. The resulting equations describe
the space-time evolution of the ‘large eddies’ including
the subgrid scale (SGS) stress tensor that describes
the effect of the unresolved small scales. In principle,
the SGS stress tensor depends on the precise defini-
tion of the filtering operation and on the parameters
characterizing it. The second step is the replacement
of the SGS stress (which is unknown, since it depends
on the unresolved scales) by a ‘model’. The ‘model’
may be any expression, which can be calculated from
the resolved scales and may or may not contain some
adjustable parameters. The final step is the numerical
simulation of the resulting ‘closed’ equations for the
large scale fields on a grid small enough to resolve the
smallest of the large eddies, but still much larger than
the fine scale structures at the Kolmogorov scale level
[3]. Here, we focus our attention on the third step,
i.e. is using the LES method with the Smagorinsky



model to solve a three-dimensional time-dependent
cavity flow.

GOVERNING EQUATIONS
The dimensionless Navier-Stokes equations for incom-
pressible, three-dimensional, and, time-dependent flow
in index notations are as follows:

@ui:O
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The governing LES equations are obtained by filtering
the above equations. Filtration is a process by which
all scales smaller than a selected size (e.g., grid size) are
eliminated from the total flow. It defines the resolvable
part of the flow, and is accomplished by using a general
filter function in space to limit the range of scales in
the flow field. In one dimension, we have:

flx) = é /f(x')G(x,x’)da;’
flx) = f(x) = f29°(x) (2)

where, f%9%(x) is the SGS component of the variable
f(x). Applying the above filter operation to the
Navier-Stokes equations, we derive the LES equations
as follows:

0u; =0
_ _ _ 1 _
Oty + Op(T,ur) = —0;p+ Eakkui — 05735 (3)

The effects of the small scales are present through
the SGS stress tensor:

7 = (W; — ;1) (4)

which must be modeled [2].
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Figure 1. Geometry and boundary conditions of the
Lid-driven cavity flow.

Subgrid Scale Model

The key to the success of LES is to accurately represent
the resolved SGS stresses. There are a number of SGS
models varying in complexity from eddy-viscosity to
one-equation models. The most widely used model is
Smagorinsky, which was suggested in 1963. This model
is based on Boussinesq’s approximation, in which the
anisotropic part of the SGS stress tensor is related to
the strain rate tensor of the resolved fields through an
eddy-viscosity [4], i.e.,

dij .
Tij — ?JTM = —2Vt5¢j (5)

where, v, is the eddy-viscosity, which is computed
from the resolved strain rate tensor magnitude and a
characteristic length scale as:

v =1|3] = C.A% 3] (6)
where, [ is a characteristic length scale and is as-
sumed to be proportional to the filter width (A via a
Smagorinsky coefficient, Cs . In this research, C; was
considered to be 0.17, which was suggested by Lilly [5].
|S| = (25,;5i;)% is the magnitude of the resolved strain
rate tensor and,

= 1, 0u; 0u,
S = 2 (= ]
J 2(891;] + 8xi
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Table 1. Parameters of the cases run in the present study.

Case | Re = % Grid Points(x, y, z) Ax;/L; L; (x,v,2)
1 3200 35 % 35 x 35 2% 1072 1.0x1.0x 1.0
2 10000 65 x 33 x 65 1.5 x 1072 1.0 x0.5x 1.0

Table 2. The applied grid arrangements for the grid resolution study of case 2.

Grid | Grid Pointsx,y,z | Minimum Grid Spacing | MaximumGrid Spacing
1 33 x 17 x 33 0.0099 0.05217
2 49 x 25 x 49 0.00641 0.03484
3 65 x 33 x 65 0.00474 0.02614
4 81 x 41 x 81 0.003761 0.02092
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Figure 2. Grid resolution study profiles at different centerlines for case 2: (a) streamwise velocity profile at x=0.5; y=0.25
line, (b) vertical velocity profile at y=0.25; z=0.5 line, and (c) lateral vorticity profile at y=0.25; z=0.5 line.

Note, in the classical Smagorinsky model with a con-
stant C , the concept of a filter is required and one does
not need to know how exactly it is defined because one
does not need to use the filtering operation explicitly in
solving the basic equations [2]. The SGS stresses can
be decomposed into three parts Leonard, Cross, and,
Reynolds shown below:

Tij = Wty — UU; = Ll'j + Oij + Rij (8)
where,

Lij = U;U; — U;Uy

Cl'j = l_LﬂI/;- + ﬂju;, and

Rij = uju; (9)

The Leonard stresses represent interactions between
the resolved scales, which result in SGS contribution

and can be computed in terms of the LES field,
@. The cross stresses represent interactions between
the resolved and unresolved scales, whereas the SGS
Reynolds stresses represent interactions between small
(unresolved) scales. Ounly C;; and R;; need to be
modeled and the Smagorinsky model is, therefore,
applied only to the traceless part of C;; + R;;
while L;; is computed explicitly. In this formulation,
one does need to know explicitly what the ‘filter’
function is, since it is needed in the formulation [1,
2]. Smagorinsky model, though very popular, has some
notable drawbacks: (a) it requires an input model
coeflicient, C, , which is flow dependent, and varies
in time and space; (b) it is absolutely dissipative,
and can not account for backscatterring (it assumes
that energy is only transferred from large to small
scales [6]). Dynamic models, which are capable of
removing some of the drawbacks of the Smagorinsky



model, are suitable alternatives. In these models,
C, (in the subgrid eddy-viscosity) is not an arbitrary
constant specified a priori, but it is calculated during
the computational processes [2, 6].

COMPUTATIONAL METHODOLOGIES
In this work, the computational domain is a cubic
cavity (of length L;), with a uniform velocity (U )
condition at the top. The coordinate system used
is Cartesian (x, y, z), where x is aligned with the
flow direction, y is vertical, and z is perpendicular
to the xy-plane (figure 1). Different cases studied
here are described in Table 1. The computational
grid used was non-uniform in all three-dimensions,
where the grid points were clustered near the walls.
Grid resolution study was performed considering four
different grid arrangements. Table 2 shows the applied
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grid arrangements for case two. The mean values
of streamwise velocity (U), lateral velocity (W), and
lateral vorticity at the centerlines of the cavity are com-
pared (figure 2). Based on these comparisons, the third
grid arrangement was selected for the simulation of case
two. For code verification purposes, jet penetration
and mixing characteristics of multiple jets in a cross
flow on a flat plate at three different velocity ratios
was investigated.

The results showed better agreement with the
experimental measurements of Ajersch et al., in com-
parison with their own RANS results (see [7]). The
following algebraic equation in x-, y-, and z-directions
is used for grid stretching near the walls:
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Figure 3. Time-averaged velocity profiles at different centerlines for case 1: (a) streamwise velocity profile at x=0.5;
y=0.5 line, (b) vertical velocity profile at y=0.5; z=0.5 line, and (c) lateral velocity profile at x=0.5; z=0 line.
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Figure 4. Time evolution of streamwise, lateral and spanwise velocity profiles at three different points for case 2: (a)
cavity center point (x=0.5, y=0.25, and z=0.5), (b) laterally spaced from the cavity center point (x=0.5, y=0.25, and
2z=0.256), and (c) laterally spaced from the cavity center point (x=0.5, y=0.25, and z=0.745).

2a+8)[(B+1)/(8 - D)) 420 — 5
(20 + 1) {1 +[(B+1)/(8- 1)]07—&)/(1—&)}
(10)

x; = Ly

in which, # and § are the metric and the clustering co-
efficient, respectively. Also, a introduces the clustering
position. The minimum and maximum grid spacing are
given in Table 2 for case 2.

An incompressible finite volume method, using
unsteady SIMPLE algorithm, and implying a staggered
grid arrangement was used in this study. It should be
noted that the subgrid scale term in the momentum
equation was considered as the source term in the
unsteady SIMPLE algorithm. Therefore, there are no

changes in this algorithm except in the source term.
All spatial terms in the Navier-Stokes equations were
discretized using Power-Law scheme. Time averaging
was used with a constant time step of 0.01 second for
4500 time steps. To discretize the grid scale filter,
we employed the box filter in physical space with the
trapezoidal rule and linear interpolation. The length
scale of the grid filter was equal to the grid size.

RESULTS
LES of an incompressible flow in a three-dimensional
cavity at different Reynolds numbers, including 3,200
and 10,000, were performed using the Smagorinsky
SGS model. The Reynolds number was based on the lid
driven velocity, Ug , and the cavity length, B. Previous
experiments have shown that, at Reynolds numbers
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Figure 5. Contours of the ratio of turbulent viscosity to the kinematic viscosity at y=0.25 plane for case 2: (a)
x-component, (b) y-component, and (c) z-component.
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Figure 6. Time-averaged velocity profiles at different centerlines for case 2: (a) streamwise velocity profile at x=0.5;
y=0.5 line and (b) vertical velocity profile at y=0.5; z=0.5 line.



Investigation of Three-Dimensional Turbulent Cavity Flow Using Large Eddy Simulation Approach 7

lower than 5,000, flow is essnetially laminar although
inherent unsteadinesses may occur. At Reynolds num-
bers higher than about 6,000, flow becomes unstable
near the downstream eddy. As the Reynolds num-
ber further increases, the flow becomes increasingly
turbulent near the walls, and at Reynolds numbers
higher than 10,000, the flow near the downstream eddy
becomes fully turbulent [8]. Therefore, the two cases
considered in the present work are in the laminar and
locally turbulent regimes, respectively.

Figures 3(a), 3(b), and 3(c) show the computed
mean dimensionless velocities <U>/Ug, <W>/Up and
<V>/ Up at the centerlines in horizontal, vertical and
spanwise directions for case 1 and are compared with
measurements of Prasad and Kosefl [8]. Also, the
results obtained without using any SGS model are
shown in those figures. Both computed profiles agree
extremely well with each other and are in good agree-
ments with experimental data. This shows that, the
effect of the SGS model diminishes when the flow is
essentially laminar [8, 9, 10]. In figures 3(a) and
3(b), we note that, the magnitude of the peak of the
velocities was predicted correctly, but the thickness
and the maximum velocities at the boundary layers
were slightly over-predicted. In figure 3(c), the two
computed profiles of velocity in y-direction were shown
and again they are in good agreements.

In figures 4(a), (b), and (c), the time evolution
of streamwise, lateral and spanwise velocity profiles
at three different points, namely, cavity center point
(x=0.5, y=0.25, and z=0.5) and two laterally spaced
from the cavity center point (z=0.256 and z=0.745)
are shown. These profiles are highly non-linear.

In figures 5(a), (b), and (c), the contours of ratio
of turbulent viscosity to kinematic viscosity at y=0.25
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Figure 8. The Reynolds stress 500% <U'W'>/Ug? profile
on y=0.5, z=0.5 line for case 2.

plane are shown. As it can be seen form these figures,
the maximum turbulent viscosity occurs at the top lid
(z=0.0) and at x=1.0 wall. The maximum viscosity
ratio in x-, y-, and z-directions are 40.09, 35.58, and
16.71, respectively, close to z=1.0 plane near x=0.0 and
x=1.0 walls.

Figures 6(a), (b), and (c¢) show the computed
mean dimensionless velocities <U>/Up and <W>/Up
at the centerlines in horizontal and vertical directions
for case 2 and are compared with measurements of
Prasad and Koseff [8]. At this Reynolds number, the
flow has become turbulent near the downstream eddy.

The computed centerline mean streamwise and
lateral velocity profiles agree well with experiment. It
should be noted that the magnitude of the peak of the
velocities was predicted correctly, but the thickness and
the maximum velocities at the boundary layers were
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Figure 7. Root-mean-square (rms) velocities for case 2: (a) Urms at x=0.5; y=0.5 line and (b) W,.,s at y=0.5; x=0.5 line.
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Figure 9. Time-averaged isolines of velocity, pressure, and Reynolds stress at Y=0.25 plane for case 2: (a) <U>-<W >
streamlines, (b) pressure, and (c) Reynolds stress (500% <U'W'>).

negligibility over-predicted. In figures 7(a) and (b),
the root-mean-square (rms) velocities V<U’?>/Up and

V<> /Up at the horizontal and vertical centerlines
are shown and compared with experimental data.
Note, U] = U; — <U;> . In figure 7(a), the peak of
U,ms profile was under-predicted near the bottom wall
and the top lid. In figure 7(b), again, the peak of the
W,.ms was under-predicted near the downstream wall
although it was shifted to the right.

In figure 8, the Reynolds stress (500%
<U'W'>/Ug* ) profile at y=0.5, z=0.5 line for case 2
is shown. Note, the Reynolds stress being discussed
is the conventional time averaged one and should
be distinguished {rom the SGS Reynolds stress (7;;)
, defined in equation (4). The computed Reynolds
stress was under-predicted near the top lid and was
shifted to the left. Also, it was over-predicted near
at the cavity center. As, it was stated before, one
of the drawbacks of Smagorinsky model is that it is

more dissipative near the boundaries and, therefore,
the under-prediction of the Reynolds stresses near the
top lid is reasonable. This under-prediction may be
corrected using a suitable dynamic SGS model.

In Figure 9, the time-averaged isolines of velocity,
pressure, and Reynolds stress are shown at Y=0.25
plane. In figure 9(a), the time-averaged isolines of ve-
locity (streamlines of streamwise and normal velocities)
are shown. In this plane, three vortices are observed:
one near the center and the others at the bottom
corners. In figure 9(b), the isolines of pressure are
shown. From this figure, it is clear that, the points
of minimum and maximum pressure are at the top
left and right corners, respectively. Note also that,
the pressure distribution is obtained from the SIMPLE
algorithm. In figure 9(c), the isolines of Reynolds
stress (500% <U’'W’>) are shown. It is observed that
the region between the vortices has the maximum
and minimum Reynolds stresses. It should be noted
that the grid refinement required for satisfying the
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Kolmogorov length scale is proportional to Re? nodes
in each direction (for DNS approach). For most grid
arrangements, this grid requirement is inaccessible,
because of CPU time and memory capacity. Even
though the present grid cannot resolve the Kolmogorov
scale very well, it can resolve the scales significantly in
the flow as seen from the mean-velocity, rms-velocity
and Reynolds stresses obtained from the LES approach.
Therefore, the small differences between the computed
results and the experimental data are probably due to
bad behavior of the Smagorinsky model near the walls

[9].

CONCLUSION

LES of an incompressible flow in a three-dimensional
cavity was performed using Smagorinsky model. Two
cases at different Reynolds numbers, including 3,200
and 10,000 were studied and the computed mean
velocities, root-mean-square (rms) velocities, and the
Reynolds stresses were shown on the centerlines of
the cavity and were compared with the experimental
data of Prasad and Koseff. These comparisons showed
reasonably acceptable agreements within the approx-
imations. However, the mean and the rms velocities
were slightly under-predicted near the walls and near
the top lid. Also, the thickness and the maximum
velocities of the boundary layers were slightly over-
predicted and the Reynolds stress profiles were under-
predicted near the top lid. Moreover, maximum
turbulent viscosity in x-, y-, and z-directions occurs
close to z=1.0 plane near the x=0.0 and x=1.0 walls.
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