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A Two-Step Modification toward
Implementing Compressible Source

Terms in Low Compressible Flows

Masoud Darbandi', Seyed Farid Hosseinizadeh?

There is a general challenge in CFD research work either to impelement density

variation in incompressible algorithms or to solve constant-density fields using
compressible algorithms. A desirable extension is the one which requires a
minimum number of modifications and exhibits mazimum performance. In this
work, an easy two-step modification scheme is introduced in order to include

density variation in a specific incompressible algorithm.

The modifications

result in new compressible source terms in the formulations which their
behaviors are studied through the solution procedure.

INTRODUCTION
As is known, incompressible methods are normally
incapable of implementing the density variation in
their algorithms [1]. On the other hand, compressible
algorithms are widely developed for solving flow fields
with high density variation [2]. The compressible meth-
ods are not basically recommended for studying low
density-variation conditions [3]. Contrary to the com-
pressible algorithms which benefit the advantages of
density-based procedures, incompressible flow solvers
mostly choose pressure-based procedure to solve the
flow fields with invariant density. Scholars on hoth
sides have long tried to employ suitable features or
techniques in order to extend the capabilities of their
algorithms for solving low density variation fields [4,5].
Generally, pressure-based methods have been more
successful in solving low density variation fields. Using
either pressure-based or density-based algorithms, the
main objective of the algorithm developers has been to
achieve the highest capabilities while implementing the
least modifications in the primitive formulation. One
such attempt is to take the advantages of an analogy
between compressible and incompressible formulations
[6]. This analogy is used to extend an arbitrary
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pressure-based method to take into account density
variation in its primitive algorithm using minimum
modifications. The analogy has been used for extend-
ing incompressible SIMPLE-based algorithms as well
[7]. It is shown that the extension generally needs two
modifications with respect to the primitive incompress-
ible algorithms. The modifications can be counted as,
firstly, including the compressible part of the Navier-
Stokes equations into the incompressible formulations
and, secondly, updating the variable density field at the
end of each iteration.

One major application of low density-variation
field is to solve the flow fields with heat transfer. In
such flow fields, the density variation can be low or high
depending on the temperature gradient between the
highest and lowest temperature zones in the domain.
A literature survey shows that there has been a lot of
research in solving low density variation fields and few
activities in solving high density variation fields. The
investigators mostly employ pressure-based algorithm
to solve both flow fields numerically. As is known, the
buoyancy driven flow is known as a case of either low
or high compressible flow fields. There are numerous
applications in industry where the buoyancy performs
the key role in the processes. Buoyancy driven flows
are also suitable for testing compressible algorithms
intend to solve low density variation fields. Choi and
Merkle [8] solved the low Mach number regimes using
a density-based algorithm and implementing artificial
compressibility. Chenoweth and Paolucci [9] presented
the results for the free convection in square cavity
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using a pressure-based algorithm. They treated the
flow as a compressible one and did not implement
the classical Boussinesq approximation. Their results
are very similar to those obtained from incompressible
algorithms. Tsmail and Scalon [10] obtained reliable
results for incompressible regime using a pressure-based
finite-volume-based finite-element method. Yu, et al.
[11] used a least square finite element method and
obtained results for compressible natural convection.
Their results are different from those of incompressible
algorithm.

As was mentioned, Darbandi and Hosseinizadeh
[7] developed a new analogy for solving compressible
flow using SIMPLE incompressible algorithm. Using
this analogy, a basic incompressible numerical algo-
rithm (SIMPLE) was generalized to solve compressible
flows. However, this reference does not include the
energy equation in the extension, and mainly concen-
trates on isothermal flows. In this paper, the analogy
is suitably extended for treating low density-variation
flow fields with and without heat transfer. To validate
the extended formulation, the natural convection in a
square cavity is selected as our test case. De Vahl Davis
[12] has provided benchmark solution to this problem.
His results are used to validate the current extended
algorithm. In this work, the role of compressible
source terms in incompressible formulations is widely
investigated.

DOMAIN DISCRETIZATION

A two-dimensional solution domain is divided into a
number of control volumes. The control volumes are
distributed based on a staggered grid arrangement [13].
In this work, capital letter subscripts of I and .J are
used to enumerate the main grid lines which pass nodal
points in x and y directions, respectively, and lower case
subscripts of ¢ and j are used to enumerate the grid
lines which pass cell faces in the z and y-directions,
respectively.

GOVERNING EQUATIONS
The two-dimensional Navier-Stokes equations in con-
servative forms are given by
oF N 0G  OR N aT
dr  dy Ox Oy
where F', G, R, T and B are given by

+ B (1)

F = (pu, pu® + p, puv, puh) (2)
G = (pv, puv, pv® + p, pvh) (3)
R=1(0.Tps.Tay, 0u) (4)
T =(0.7ys, Ty, 0y) (5)
B =(0,0, pogB(T; — T),0) (6)
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The components of stress tensor, 7, are defined as

=gt - 3G+ 50} 7
=2~ { 2u(Ge + 50} ®
oy = = 50+ 50) (9)
Op = UTpy + VUTay + kg—i (10)
Oy = UTyy + VTyy + kg—z (11)

In the above equations, T, is a reference tem-
perature, pg is a reference density, [ is the thermal
expansion coefficient, %k is the thermal conduction
coefficient and ¢ is the gravitational acceleration. The
terms inside braces {} vanish in the incompressible
limit. The equation of state normally is the desired
equation to calculate the density in compressible flow
algorithm. If the fluid is assumed to be a calorically
perfect gas, it yields

P = pRT (12)

COMPUTATIONAL MODELING
In order to achieve a dual purpose unified algorithm,
the integration of a suitable re-arrangement of the gov-
erning equations over control surface S of an arbitrary
control volume in the solution domain is presented by

- 45—
/ [F7 + Gj] - dS =0 (13)
Js
/ [(u)F?—&- (U)Ff—k Pi— va—F;— @a—F;} dS =57
s Ox Jy (14)
/5 [(u)G?—O— ()Gj + Pj — @(Z—if— vi—j}} dS =

/ BdV +s7¥
v (15)

where dS is a vector normal to control surface, V'
is the volume of the control volume, and kinematics
viscosity is indicated by v. The upper case I, G,
and P are chosen as the dependent variables of the
solution algorithm. They will be elaborated later. At
this stage, one may simply specify these variables as
F = pu, G = pv, and P = p. The s, s¥ source
terms include both the additional diffusion terms in
the compressible equations, i.e., Eqs.(7)-(9), and the
additional terms which are resulted after linearizing
the nonlinear diffusion terms to the desired dependent
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variables [6]. For example, the latter linearization

871 du : 871 _
for p52 and p3y terms in Eqgs.(7)-(9) yields p5r =
25— 22 and ,LLa“ =yp2F _ Vg ap The bar over s

dx ax dy

means it is explicitly calculated from the known values
of the parameters in the previous iteration. The proper
employment of such linearizations finally results in [7]:

l_m_/y oF 28G 4(9p 28p 7L
° Js3 or Jy or U@y

0G  dp I\ i e
VECRRTRNAY

An appropriate treatment of Eqgs.  (14)-(15)
results in two sets of algebraic equations which can be

separately solved to estimate the approximate value of
F* and G* [7]. They are derived from:

ai, g I—Zanb e T (Proq = P7 A g +big+s, ]
(18)

ar;Gi ;= amwGhy + (Pfy —Pf )AL +br+s!
(19)

where A; ; and A ; are the cell face areas at east (or
west) and south (or north) of the u-control volume,
respectively. In addition, b; ; and by ; indicate the
additional source terms in the z and y-momentum
equations, respectively. The two additional source
terms of s;;’ and s; 7 play no role in incompressible
equations because their values are absolutely zero.
Indeed, the values of the coefficients a7 ;.a, 7,b5;,b: 7
and a,; are determined after a proper choice of a
convection-diffusion model [8]. In the current work,
we have employed the hybrid method.

If a pressure field, say p*, is guessed and substi-
tuted in Eqs. (18)-(19), the two system of algebraic
equations can be solved for F* and G*. In fact, this
strategy is a trial and error tactic which is entirely
analogous to an algorithm named SIMPLE [9]. SIM-
PLE converts the continuity equation to a pressure
correction equation. This equation provides a tool to
estimate the pressure correction field p' at all nodal grid
points. The prime indicates the required correction to
correct the star. The pressure correction magnitude is
used to correct the preceding approximate solutions as:

P=—pP 4P (20)
Fig=F;+di (P, ;- P ;) (21)
Gr;=Gy;+dr(Pr ;4 —Pry) (22)
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where d“] = ALJ/G/LJ and d]_’j = A[J/Cl,]vj. The rest
of SIMPLE procedure is to solve the other discretized
transport equations and to update the secondary de-
pendent variables such as density. By this stage, the
residuals are checked and if they are not low enough,
the procedure is repeated for another iteration.

Although SIMPLE was originally developed for
solving incompressible flow, the current algorithm en-
ables it to consider density variation. As was explained
earlier, the current ability is obtained with minimum
modifications. The bases for such modification were
first introduced by Reference [6]. It uses an analogy
between incompressible and compressible governing
equations in order to enable incompressible algorithms
to solve compressible flow. The primary point in
this extension is the choice of dependent variables,
which result in a unique role for dependent variables
in both compressible and incompressible formulations.
A meaningful identification for the chosen dependent
variables can be interpreted by

(F.G.P} = {w,v,p/py} incomp. (23)
{pu,pv,p}  comp.

The p/pg division only multiplies the magnitude of the
real pressure field by a constant factor of 1/pq.

By the end of this section, we should bhe able to
classify the presented modifications in two simple steps.
Step one is to add s” and s¥ to the z- and y-momentum
equations as compressible source terms. They vanish
in incompressible limit. Step two is to consider density
variation in the algorithm. This can be achieved by
including a switch in the algorithm. Tt updates density
at the end of each iteration as:

) po incomp.
r= p/RT  comp.

The compressible equation of state is valid for
a calorically perfect gas. Since the nature of flow is
elliptic in low density variation fields, we do not need
including a parabolic nature in Eq.(24).

(24)

RESULTS AND DISCUSSION
The extended formulations and the developed algo-
rithm are firstly tested in a square cavity where the
inside flow is driven by the upper wall/lid movement.
The cavity has unit dimensions. The lid velocity is
unit for incompressible case; however, the velocity
depends on bhoth Reynolds and Mach numbers in
compressible flow case. The lid velocity is used to non-
dimensionalize the flow field velocity components. A
mesh distribution of 81x81 is fine enough to achieve the
purposes in this study. However, Reference [7] performs
mesh-independent study for a similar formulation in
the cavity problem. The cavity is tested at Reynolds
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of 1000 and three Mach numbers of 0.3, 0.6, and 0.9 as
well as in the incompressible flow case.

Figures 1 and 2 present the cavity centerline veloc-
ity distributions. The U and V wvelocity distributions
are plotted along vertical and horizontal centerlines,
respectively. There are many benchmark works which
the current results can be validated upon, e.g., Ref-
erence [14]. However, we do not intend to evaluate
the accuracy of the current algorithm. As discussed
in the preceding section, it is pure SIMPLE procedure
whose performance is well-known for the CFD workers.
Tts accuracy remarkably depends on the method of
flux approximation at control surfaces. Using a low-
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order hybrid approximation in this work enforces the
use of finer grid for a better achievement. In the
current attempt, we are to illustrate the performance
of a single computational algorithm used as either a
compressible or incompressible flow solver to treat low
density variation fields. As is observed, irrespective
of the validity of solutions, both incompressible and
compressible solutions perform almost identical veloc-
ity profiles using different flow Mach numbers. Since
there is a rapid drop in the velocity magnitude close
to the upper lid, there is also a sharp drop in Mach
number and density variation [6]. This is why all four
profiles exhibit similar behaviors in Figs 1 and 2.

As was emphasized in the Computational Mod-
eling section, Eqs.(8)—(9) play important roles in con-
sidering density variation in the current formulations.
Therefore, it is worth investigating the source term
magnitude during the solution procedure. Figures 3
and 4 illustrate the maximum magnitude of the ab-
solute value of s” and s¥Y source terms VS. iteration
number N. In these figures, the source terms have
been nondimensionalized with pu? (using unit values
of 1kg/m?* and 1 m/s). Figures show that the max-
imum magnitudes increase as the flow Mach number
increases. These plots are well consistent with the
physical behavior of the compressible source terms in
the current formulations. In other words, a lower
Mach number causes less density variation. For Mach
numbers less than 0.3, both terms vanish. Although
iteration procedure ends around N=800, the plots
are restricted to N=100 because the maximum value
of these source terms rapidly converge to their final
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Figure 2. V velocity distribution at horizontal centerline.
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Figure 4. Maximum value of the compressible source

term in y-momentum.

magnitudes. This restriction also helps to magnify the
variation through early iterations.

The second test problem is the natural convection
in a square cavity. The top and bottom walls of the
cavity are insulated and the sidewalls are maintained at
constant but different high #;, and low ¢, temperatures.
The fluid is assumed to be air and its properties are
calculated at tg = 20°C. The Prandtle number is 0.71
and tp, — t. = 10°C. The dimensions are normalized
with H. The results are presented for two different
Rayleigh numbers of 10° and 10%. To obtain the
mesh independence results, we use a 200 x 200 grid
distribution for Rayleigh number of 10° and 300 x
300 grid distribution for Rayleigh number of 109,
The preliminary investigation showed that these grid
resolutions would suffice to obtain mesh independent
solutions.

In order to present a fair evaluation of the current
results, Table 1 provides sample detailed comparisons
between the current results and benchmark solutions.
The comparison is presented for both maximum veloc-
ity components on the centrelines of the cavity and the
Nusselt number magnitudes. The results are compared
with those of other reliable works [10,12,15] of which
the results of Reference [12] are known as benchmark
solutions. The mean heat transfer through the convect-
ing cavity is represented by the mean Nusselt number
of the domain. This number is also calculated and
tabulated in Table 1 and compared with the results of
the benchmark references. The present results compare
favorably with the benchmark results. All the results
show less than 0.72% difference at Ra = 10° and 1.76%
at Ra = 10%. As is seen, the present heat transfer

41

results are in excellent agreement with the benchmark
results.

Figures 5 and 6 present the streamlines in the
convecting cavity at Ra = 10° and 10°  These
streamlines have been compared with those presented
by the other benchmark workers such as Reference
[12,15]. There are good qualitative agreements between
them. As is seen, there are two opposite vorticities in
the domain at Ra = 10° whereas they are broken into
three smaller vorticities at higher Rayleigh numbers of
Ra = 106,

Similar to the cavity case, this test problem is
also investigated for illustrating the behavior of the
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Figure 5. Streamlines in the convecting cavity at
Ra =10°.
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Figure 6. Streamlines in the convecting cavity at
Ra =10°.
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Table 1. A qualitative comparison of the current solutions with those of the other works and the amount of difference.

Masoud Darbandi, Seyed Farid Hosseinizadeh

| Ra = 1E5 | U (1) | Vi (dif1%) | Nagyae (difi%) | Nuigyy (difi%)
Benchmark [12] 34.730 68.590 7.7 4.519
Ismail/Scalon [10] 33.421(3.77) | 70.440(2.70) 7.812 (1.23) 4.651 (2.92)
Darbandi/Schneider [15] || 33.40 (3.83) | 70.3 (2.49) 4.562 (0.952)
This study 34.980(0.72) | 68.581(0.013) | 7.739 (0.29) 4.529 (0.22)
Ra = 1E6

Benchmark [12] 64.63 219.36 17.925 8.800
Ismail/Scalon [10] 57.22(11.47) | 220.48(0.51) 15.601 (12.97) | 8.934 (1.52)
Darbandi/Schneider [15] || 64.94(0.48) 222.2(1.295) 8.797 (0.034)
This study 65.09(0.60) 220.89(0.69) 17.610 (1.76) 8.853 (0.60)

source terms in the momentum equations. Similar 6

to Figs. 3-4, Figures 7 and 8 depict the behavior

of the maximum magnitudes of the source terms in

the convecting cavity. The results indicate that the

maximums vanish with the progress in the iterations.

Comparing with Figs. 3-4, the global behavior is 4l

very similar to the behavior observed at low Mach :

number. Indeed, this is because the Mach number _ - B :::185

in the convecting cavity is dramatically low at such g

Rayleigh numbers and consistent with the behavior
observed in Figs. 3-4 at M=0.3. However, contrary
to the preceding results, the current behavior is highly
oscillatory. A lower Rayleigh number indicates a lower
Mach number and, consequently, a lower maximum
magnitude of the source term. Of course, at higher
Rayleigh numbers, the compressibility effect is impor-
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Figure 7. Maximum magnitude of s* in the convecting
cavity.
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Figure 8. Maximum magnitude of s¥ in the convecting
cavity.

tant and the Buossinesq assumption cannot be valid
anymore.

The third test case is the flow inside a channel
at a Reynolds number of 20. The channel length is
five times its height. The grid resolution is 300x60,
which is fine enough to result in reliable accuracy. The
velocity at the inlet section is a unit flat profile. The
flow inside the channel passes through the developing
zone and is fully developed at the exit. The problem is
tested at three different Mach numbers of 0.1, 0.3, and
0.5. Reference [16] provides the details of flow through
a channel at different Reynolds numbers. The refer-
ence shows that contrary to the flow variables which
are remarkably mesh dependent close to the channel
boundaries, the centerline magnitudes are less mesh
dependent and reliable solutions can be achieved using
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coarse grid distributions. Here, we intend to study
the compressibility source terms in the incompressible
formulations. Figure 9 shows the pressure distribution
along the centerline of the channel at the three Mach
numbers. As is observed, a higher pressure difference is
required in higher compressible flow cases. Irrespective
of the Mach number, the pressure at the exit is fixed. It
is because we implement similar houndary conditions
at the outlet section in all cases.

Figures 10 and 11 present the behavior of the
maximum magnitudes of the source terms in the
channel. The behavior is very similar to those observed
in the first test case. The figures show that the weight
of compressibility at higher Mach number is dominant
enough to increase the number of iterations drastically.
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Figure 9. Pressure distribution along the centreline of
channel, Re = 20.
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Figure 10. Maximum magnitude of s” in the channel.
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As are observed, the magnitudes of source terms are
not much lower at higher Mach numbers in this test
case.

CONCLUSION

Using a pure incompressible algorithm incorporated the
compressible source terms, a new two-step procedure
was developed to take into account the density vari-
ation in low compressible flow fields. The algorithm
was tested by studying three types of low density
variation regimes. The test cases were chosen in a
manner which permitted to consider density variation
as a result of either pressure variation or temperature
variation as well as their combined variations. Then,
the role of compressible source terms in the incompress-
ible formulation was deeply investigated. Obviously,
the compressibility effect becomes dominant at higher
Mach numbers. Despite the higher compressibility
effect at higher Mach numbers, the current developed
compressible formulation (which is solved in a pure
incompressible algorithm) is not deteriorated, and pro-
vides solutions with suitable accuracy comparable to
those of benchmark solutions. The accuracy increases
with grid refinement due to the use of a first-order
hybrid scheme to approximate the fluxes at cell faces.
The developed algorithm showed excellent performance
in all test cases. The two-step procedure can bhe eas-
ily implemented in any SIMPLE-based incompressible
algorithm to solve the low density variation regimes.
This type of regime has numerous applications in the
heat transfer study where the Buossinesq assumption
fails to provide suitable approximation for the influence
of the buoyant force.
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