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Solar sails use sunlight to propel a vehicle through space by reflecting 

solar photons off a mirror-like surface made of light-reflective 

material. To be able to work as an interplanetary cargo ship, the solar 

sail area should be large enough to receive the required acceleration 

from the sunlight. However, mechanical deploying mechanisms are 

not reliable for deploying such a large solar sail. This paper presents 

formation control of space robots for the on-orbit assembly of large 

solar sails. Contrary to previous works, the dynamic equations of 

space robots in the formation are derived by considering relative 

motion of the space robots concerning the sail hub orbiting the Earth. 

The uncertainties including external disturbances, unmolded 

dynamics, and parameter uncertainties, are considered a single time-

varying term in the dynamic model. Then, an adaptive sliding mode 

controller combined with a second-order observer is expanded to 

control the on-orbit formation of space robots as well as resist the 

disturbances. Finally, a numerical simulation demonstrates the 

proposed approach is efficacy. 

Introduction  

Solar sails are large, flexible, reflective surfaces that 

utilize solar radiation pressure to propel in space in 

a similar way that kites employ the wind to lift 

themselves up. They are accelerated by the 

momentum gained from the solar photons when they 

hit and reflect off the sail membrane [1]. Since the 

solar sails use solar energy, there is no need to 

supply propellant. Thus, they provide affordable 

propulsion, longer mission lifetimes, larger payload 

mass, access to unreachable orbits such as non-

Keplerian and high solar latitude orbits, and high 

speeds in comparison with conventional propulsion 

systems [2]. Launched in 2010, Interplanetary Kite-

craft Accelerated by Radiation of the Sun 

(IKAROS), made by the Japanese Aerospace 

 
1 PhD. Candidate 

2 Assistant Professor (Corresponding Author) Email: * kiani@sharif.edu   

Exploration Agency (JAXA), was solar sails were 

controlling the first demonstration of a spacecraft 

[3]. 

To be capable of carrying larger payloads and 

working as an interplanetary cargo-ship, the sailôs 

area should be increased to receive more 

acceleration from the sunlight [4]. For instance, to 

carry a payload on the order of a few tons, a sail with 

an area of 1 km2 is required [5]. But, for these 

ambitious flagship-class missions, there are some 

key technology challenges as follows [6]: 

¶ Deployment of very large sail membranes 

¶ Reducing areal density to the orders of 2.5-25 

g/m2  

¶ Degradation of sail material due to the thermal 

effects and ultraviolet radiation 

¶ Attitude control of deployed solar sail 

https://jast.ias.ir/article_175427.html
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¶ Sail packing in a very efficient way 

This paper focuses on the first issue, which is to 

provide an efficient solution for the deployment of 

the sail. Generally, a mechanical mechanism must 

be designed to deploy the solar sail automatically. 

However, most of the mechanisms, such as the 

spinning expansion devices [3] and deployable 

booms [7], are unreliable when the sail-craft size is 

in the orders of several kilometers. An efficient 

approach not affected by the system size is 

employing the on-orbit servicing robots to pull the 

sail to the desired position. Moreover, the space 

robots can be used for other missions including the 

assembly of the next solar sail after finishing their 

mission [4]. Bo and Gao [8] presented a sliding 

mode control approach for a formation consisting of 

two space robots in which a radial basis function-

based neural network is employed to adjust the 

parameters of the control law. Queiroz et al. [9] 

developed a nonlinear adaptive controller to control 

the relative position of two spacecraft in a formation 

flying that overcomes the model uncertainties and 

external disturbances. Hu et al. [4] studied the on-

orbit assembly of a 1 square kilometer solar sail 

employing a space robot formation. They proposed 

an adaptive sliding mode controller combined with 

a disturbance observer to control the formation of 

space robots. However, to simplify the dynamics 

and control problem, the formation of space robots 

has been considered a formation of ground robots. 

Therefore, the formation dynamic model is a set of 

four scalar linear equations corresponding to the 

motion of four robots. 

This paper develops the dynamics and control 

problem of Ref. [4] for on-orbit formation of space 

robots that have been employed to deploy the large 

solar sail. Contrary to Ref. [4], the full nonlinear 

dynamics describing the relative motion of space 

robots in the formation flying is considered in this 

paper. The orbital dynamics of the solar sail is 

considered, and the motion of space robots on the 

solar sail is modeled as relative motion concerning 

the solar sail. Thus, the dynamic model of the space 

robot formation will be derived as vectorial 

nonlinear equations. Then, the adaptive sliding 

mode controller combined with the disturbance 

observer is expanded for the obtained model of the 

nonlinear multi input-multi output system.  

The Dynamic Model of Space Robot 

Formation Flying 

Sequence of on-orbit assembly of the solar sail 

The solar sail consists of a hub that contains the 

wrapped sail before the extension, four booms as the 

supporting structure, and four wings in four 

quadrants as shown in Fig. 1 [4]. 

Each of the space robots has three manipulators that, 

by employing two of them it could move on the 

boom while holding the sail by the third one. During 

the on-orbit deployment of the sail, the first and 

second moments of mass of the sail, as well as the 

solar pressure and gravitational torques, will change 

dramatically due to the large size of the sail. Thus, 

in order to keep the solar sail attitude stable, the 

sequence of on-orbit assembly is considered, as 

shown in Fig. 2 [4]. The wings in the first and second 

quadrants are deployed at first, and then, the other 

wings in the third and fourth quadrants will be 

expanded. 

 
Fig. 1: The non-spinning solar sail 

 

 
(a) 
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(b) 

Fig. 2: The sequence of on-orbit deployment of the solar 

sail. (a) expanding the wing in quadrants  & . (b) 

expanding the wing in quadrants  & . 

Dynamic modeling 

This subsection will derive a nonlinear dynamic 

model for the space robot formation. The leader-

follower approach is considered for the formation. 

Firstly, the equations are developed for the relative 

motion of the fourth robot with respect to the on-

orbit solar sail, and then, the relations are 

generalized for each of the space robots. Ὑ is 

chosen as the leader and Ὑ is its direct follower. 

Thus, the relative trajectory of Ὑ with respect to the 

solar sail is the desired trajectory, and Ὑ follows the 

actual trajectory of Ὑ. In the same way, Ὑand 

Ὑtrack the actual paths of Ὑ andὙ, respectively. 

Moreover, the solar sail is assumed to be in a circular 

orbit around the Earth with a constant angular 

velocity ɤ. The schematic representation of the 

relative motion of the fourth space robot with 

respect to the solar sail is shown in Fig. 3.  

According to Fig. 3, the following assumptions are 

made: 

1. The inertial coordinate system ὢὣὤ is attached to 

the center of the earth. 

2. Ὑᴆὸᶰᴙ  is the position vector from the inertial 

frame's center to the solar sail's center. 

3. The coordinate frame ὼώᾀ is attached to the 

solar sail hub so that the ὼ axis is in the opposite 

direction of tangential velocity, the ώ axis along 

the Ὑᴆ vector, and the ᾀ axis perpendicular to ὼ 

and ώ establish a right-handed coordinate system. 

4. ”ᴆὸᶰᴙ  is the relative position vector from the 

origin of the solar sail coordinate system to the 

space robot Ὑ. 

The nonlinear dynamic equations of the solar sail 

and space robot Ὑ with respect to the inertial 

frame ὢὣὤ are respectively written as follows: 

άὙᴆ ά ὓ ά Ὃ Ὑᴆ Ὑᴆ όᴆ Ὂᴆ (1) 

ά Ὑᴆ ”ᴆ

ά ὓ ά Ὃ Ὑᴆ ”ᴆ Ὑᴆ ”ᴆ

Ὂᴆ Ὂᴆ  

(2) 

 
Fig. 3: schematic representation of the relative motion 

of the fourth space robot with respect to the solar sail 

from the top view. 

Where ά  and ά  are masses, ὊᴆȟὊᴆ ᶰᴙ  are 

disturbing force vectors, and όᴆὸȟόᴆ ὸᶰᴙ  are 

controlling force vectors for the solar sail and space 

robot Ὑ, respectively. Also, M and G are the Earthôs 

mass and the universal gravity constant, 

respectively. Due to the fact that ὓḻάȟά  , the 

Eqs. (1) and (2) are simplified as follows: 

άὙᴆ ά‘Ὑᴆ Ὑᴆ όᴆ Ὂᴆ (3) 

ά Ὑᴆ ”ᴆ ά ‘ Ὑᴆ ”ᴆ Ὑᴆ ”ᴆ

Ὂᴆ Ὂᴆ  
(4) 

Where ‘ σωψφππ Ὧά ίϳ  is the standard 

gravitational parameter. After applying some 

algebraic simplifications on Eqs. (3) and (4), the 

describing dynamic equation of the space robot Ὑ 

with respect to the solar sail expressed in the ὢὣὤ 
coordinate system is written as follows: 

ά ”ᴆ ά ‘
Ὑᴆ ”ᴆ

Ὑᴆ ”ᴆ

Ὑᴆ

Ὑᴆ

Ὂᴆ
ά

ά
όᴆ Ὂᴆ

ά

ά
Ὂᴆ 

(5) 

In order to express the Eq. (5) in the  coordinate 

ὼώᾀ system, first it should be noted that the 

relative position vector ”ᴆὸ is written as follows in 

the ὼώᾀ coordinate system: 

”ᴆ ὼǶ ώǶ ᾀὯ (6) 

Also, the constant angular velocity vector ɤ equals 

‫Ὧ. Thus, the relative acceleration ”ᴆὸ is written 

in the following form: 
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”ᴆ ὼ ς‫ώ ‫ὼ Ƕ
ώ ς‫ὼ ‫ώ Ƕ

ᾀὯ 

(7) 

Moreover, the vector Ὑᴆ Ὑᴆ Ƕ is constant in the 

moving coordinate system ὼώᾀ. By substituting 

the right-hand side of Eq. (7) into the Eq. (5), the 

nonlinear dynamic equation of the space robot Ὑ 

with respect to the solar sail is: 

ά ήᴆ ὅ‫ήᴆ ὔήᴆȟ‫ȟὙᴆȟόᴆ Ὂᴆ Ὂᴆ  (8) 

Where the relative position vector ήᴆὸᶰᴙ  is 

equal to: 

ήᴆὸ ὼὸ ώὸ ᾀὸ  (9) 

The Coriolis matrix ὅ‫ ᶰᴙ  is as follows: 

ὅ‫ ςά ‫
π ρ π
ρ π π
π π π

 (10) 

ὔȢᶰᴙ  is a nonlinear expression that is defined 

in the following form: 

ὔήᴆȟ‫ȟὙᴆȟόᴆ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợά ‘

ὼ

Ὑᴆ ήᴆ
ά ‫ὼ

ά

ά
ό

ά ‘
ώ Ὑᴆ

Ὑᴆ ήᴆ

ρ

Ὑᴆ
ά ‫ώ

ά

ά
ό

ά ‘
ᾀ

Ὑᴆ ήᴆ

ά

ά
ό

Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 
(11) 

Also, Ὂᴆᶰᴙ  in Eq. (8) is the disturbance force 

vector that is defined as Ὂᴆ ‘ ήᴆ . 

So far, the nonlinear dynamic equation of Ὑ has 

been achieved. The equation of motion of the space 

robot formation is obtained in the following form: 

ά ήᴆ ὅ‫ήᴆ ὔήᴆȟ‫ȟὙᴆȟόᴆ

Ὂᴆ Ὂᴆ

ὲ ρȟςȟσȟτ

 (12) 

Controller Design 

Control Objective 

Knowing the desired path ήᴆ ὸᶰᴙ  for the leader 

space robot Ὑ concerning the solar sail, the control 

objective is described as follows: 

ÌÉÍ
ᴼ
Ὡᴆ π 

(13) 

 

Where, 
Ὡᴆὸ ήᴆ ὸ ήᴆὸ ὲ ρȟςȟσȟτ (14) 

The desired acceleration of robot Ὑ for ὸ Ὕ is 

chosen to be: 

ήᴆ ὃÓÉÎ ς“ὸὝϳ ὃÃÏÓ ς“ὸὝϳ π  (15) 

The desired acceleration is considered to be zero 

anywhere else. In Eq. (15), A and T are equal to 

ρȢψ ρπ  and 1500, respectively. 

Adaptive sliding mode control formulation 

In this subsection, the proposed controller of Ref. [4] 

will be modified to control the on-orbit formation of 

space robots. The system dynamics (Eq. (12)) is 

rewritten assuming no control over the solar sail, i. 

e.  όᴆ π, as follows: 

ά ὼ ςά ‫ώ ά ‘
ὼ

Ὑᴆ ὶᴆ
ά ‫ὼ

Ὂ Ὂ  

(16) 

ά ώ ςά ‫ὼ ά ‘
ώ Ὑᴆ

Ὑᴆ ὶᴆ

ρ

Ὑᴆ

ά ‫ώ Ὂ Ὂ  

(17) 

ά ᾀ ά ‘
ᾀ

Ὑᴆ ὶᴆ
Ὂ Ὂ  (18) 

As it can be seen from the above relations, the 

control force must be applied in any direction. It is 

clear from the Eqs. (16)-(18) that we are dealing 

with a multi-input-multi-output system. Since there 

is a control in each direction, a sliding surface must 

be defined for each input. Therefore, there is a 

controller for each space robot that should apply the 

control law in each direction. The sliding surfaces 

are chosen as follows: 

Ὓᴆ

Ὡ ‗Ὡ Ὡ ‗Ὡ Ὡ ‗Ὡ  
(19) 

Where ɚ is a positive constant. The control law in 

each direction is written in the following form: 

όᴆ
ὑὛ ‗Ὡ ‐ ‐ǶίὭὫὲὛ

ὑὛ ‗Ὡ ‐ ‐ǶίὭὫὲὛ

ὑὛ ‗Ὡ ‐ ‐ǶίὭὫὲὛ

 
(20) 

In which, ὑ π, and ‐Ƕ is updated by the following 

differential equations [4]: 
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‐Ƕᴆ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
ρ

‖
†‐Ƕ ȿὛ ȿ

ρ

‖
†‐Ƕ Ὓ

ρ

‖
†‐Ƕ ȿὛ ȿỨ

ủ
ủ
ủ
ủ
Ủ

 (21) 

In which, ‖ π is the sensitivity coefficient of ‐Ƕ. 

The smaller the ə is, the more sensitive the ‐Ƕ is to 
ȿὛȿ. Also, † π is a small constant so that the 

expression †‐Ƕ causes ‐Ƕ remain a small constant 

when ȿὛȿ is in the neighborhood of zero. Moreover, 

In Eq. (20), ‐ π is the constant part of the 

adaptive gain ‐ ‐Ƕ as well as sets the minimum 

uncertainty tolerance capability for the controller. 

To avoid chattering, sign(S) can be replaced with the 

hyperbolic tangent function [4], which results in the 

following relationships. 
όᴆ

ὑὛ ‗Ὡ ‐ ‐ǶὸὥὲὬ–Ὓ

ὑὛ ‗Ὡ ‐ ‐ǶὸὥὲὬ–Ὓ

ὑὛ ‗Ὡ ‐ ‐ǶὸὥὲὬ–Ὓ

 
(22) 

Where the scalar ɖ determines the similarity 

between ὸὥὲὬ–Ὓ and sign(S). 

Eventually, the actual control forces are computed 

by the following relations: 

Ὂᴆ

ά ήᴆ όᴆ ὅ‫ήᴆ ὔήᴆȟ‫ȟὙᴆȟ

ὲ ὔ

Ὂᴆ όᴆȟὲ ὔ ρȟȣȟρ

 (23) 

Disturbance observer 

As can be seen from Eq. (22), measuring the 

translational velocity of space robots is required. 

However, obtaining the velocity information of a 

maneuvering space robot is difficult and even 

measurement noise will be added to the system. 

Therefore, to improve the controller performance, 

the second-order observer with finite time 

convergence [4], [10] is modified to estimate 

disturbance in any direction for each space robot and 

compensate for it in the controller. The block 

diagram of the controller combined with the second-

order observer is shown in Fig. 4. Note that the 

inputs and outputs of the blocks in Fig. 4 are vectors 

contrary to Ref. [4]. 

 
Fig. 4: block diagram of the controller combined with 

the second-order observer. 

According to Eq. (14), to adapt the observer for the 

problem considered in this paper, the error dynamics 

can be written as follows: 

Ὡᴆὸ ήᴆ ὸ ήᴆὸ

ήᴆ ὸ
ρ

ά
ὅ‫ήᴆ ὔήᴆȟ‫ȟὙᴆ Ὂᴆ Ὂᴆ

ὲ ρȟȣȟτ

 (24) 

Without loss of generality, it is assumed that the 

masses of space robots are ά ρ and Ў”ᴆ Ὂᴆ 

as well as όᴆ ήᴆ Ὂᴆ. To rewrite the error 

dynamics in state space form, the following 

variables are considered: 

ừ
Ử
Ừ

Ử
ứὼᴆ Ὡᴆ

ὼᴆ Ὡᴆ

Ўόᴆ Ў”ᴆ

όᴆ όᴆ

 (25) 

So, we have: 

ὼᴆ ὼᴆ

ὼᴆ Ўόᴆ όᴆ
 (26) 

The second-order observer is considered as follows: 

ừ
Ử
Ử
Ử
Ử
Ừ

Ử
Ử
Ử
Ử
ứ …Ƕᴆ …ᴆ

…ᴆ ὼᴆ ‎ὼᴆ ὼᴆ
ϳ

ίὭὫὲὼᴆ ὼᴆ

…Ƕᴆ όᴆ Ўόᴆ

Ўόᴆ ‎ὼᴆ …ᴆ
ϳ

ίὭὫὲὼᴆ …ᴆ ὼᴆ

…Ƕᴆ ‎ ίὭὫὲὼᴆ Ўόᴆ

 (27) 

In the Eq. (27), ὼᴆȟὼᴆȟЎόᴆ, and  ὼᴆ are the observed 

values of ὼᴆȟὼᴆȟЎόᴆ, and όᴆ, respectively. Also, 

‎ȟ‎, and ‎ are constants to be chosen. 

Note that the above observer should be employed for 

any space robot in each direction. For this reason, 

the relations in Eq. (27) are vector.  

Simulation and Results 

In order to simulate the problem, the system 

dynamics is represented in the state space form for 

ὲ ρȟςȟσȟτ: 

ήᴆ

ήᴆ

ήᴆ

Ὂᴆ Ὂᴆ ὅήᴆ ὔ

ά

 (28) 

Where Ὂᴆ ‘ήᴆ, ‘ πȢυφ, ‘ πȢτψ, ‘
πȢσς, and ‘ πȢφυ. The simulation parameters 

have been reported in Table 1. 
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Table 1: Simulation parameters. 

parameters value 

+  2 

ɚ 5 

‐ 0.001 

ə 10 

† 0.01 

ɖ 10 

The masses of robots are equal to ά ά ά
ά ά ςππ ὯὫ in the dynamic model. To 

examine the robustness of the presented method in 

the presence of parametric uncertainties, it is 

assumed 20% mass uncertainty in the controller. 

Thus, we have ά ά ά ά
ρȢςά ςτπ ὯὫ. 

Results and discussion 

In the following, the actual and desired paths are 

drawn in a graph for each robot to compare. 

 
Fig. 5: The actual and desired paths for space robot 1 

along x direction, y direction, and z direction. 

 
Fig. 6: The actual and desired paths for space robot 2 

along x, y, and z directions. 

 

 
Fig. 7: The actual and desired paths for space robot 3 

along x direction, y direction, and z direction. 

 

Fig. 8: The actual and desired paths for space robot 4 

along x direction, y direction, and z direction. 

The tracking error of desired path for each of the 

space robots along x, y, and z direction is drawn in 

Figs. 9-12. 

 
Fig. 9: The tracking error for space robot 1. 
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Fig. 10: The tracking error for space robot 2. 

 
Fig. 11: The tracking error for space robot 3. 

 
Fig. 12: The tracking error for space robot 4. 

The control forces of the space robots are shown in 

Figs. 13-16. 
 

 
Fig. 13: The control force of the space robot 1. 

 
Fig. 14: The control force of the space robot 2. 

 
Fig. 15: The control force of the space robot 3. 
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