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 In this article, the optimal guidance law design for the 

injection problem with a 3D model and initial deviations under 

final constrained conditions and time has been studied. The 

main goal of the research is to investigate the effectiveness of 

the Vectorized high-order expansion (VHOE) method for 

extracting the near-optimal path and minimizing the final 

condition errors. After reviewing the high-order extrapolation 

methods, the VHOE method is briefly reviewed and then used 

to solve the injection problem up to the third order. This 

guidance law is minimally sensitive to large initial state 

deviations and can be implemented online with minimal 

computations in practice. The effectiveness of the high-order 

extrapolation method is examined through Monte Carlo 

simulations, and it is shown that the guidance law based on the 

VHOE method not only has adequate accuracy but can also be 

a suitable alternative for the path-following problem. 

Introduction 

Finding the optimal path to reach the desired orbit 

with path constraints is a classical optimal control 

problem [1-6]. Many theoretical efforts have been 

made to analyze this problem. Accurate or 

approximate analytical solutions are obtained based 

on the dynamics of the problem. To solve the 

problem practically, various methods have been 

developed, which are categorized as direct, indirect, 

and hybrid methods. 

Direct methods [6-10] transform the optimal control 

problem into a nonlinear programming (NLP) 
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problem in which many discrete approaches can be 

envisioned. Then the optimization problem at a large 

scale is solved by nonlinear programming software. 

However, solving the problem at a large scale makes 

the solution computationally expensive. 

Indirect methods [11-13] transform the optimal 

control problem into a boundary value problem. In 

optimal control, the maximum Pontryagin's 

principle is explicitly or implicitly used. The 

uncertainties of the problem are initial costs that 

must be considered to estimate the desired 

conditions at the final time. Hybrid approaches 

attempt to combine direct and indirect methods to 

take advantage of their respective qualities [15-14]. 

https://jast.ias.ir/article_170855.html
https://jast.ias.ir/article_170855.html
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A direct method is first used to create a good initial 

guess, and an indirect method is used to achieve 

accurate convergence. Among the numerous hybrid 

techniques applied to optimize the path, particle 

swarm optimization [16], genetic algorithms [17], 

and Hamilton-Jacobi-Bellman-based dynamic 

programming [18] can be mentioned. 

In 2008, the high-order expansion method was 

studied using differential algebra to solve space 

dynamics problems in [19]. 

Differential algebra is a tool used to perform 

algebraic operations not only on the value of a 

function at a particular independent variable but also 

on its higher-order derivatives involved in 

equations. Therefore, more information can be 

extracted from solving a problem. This method was 

developed by Martin Berz [20] in 1999 for solving 

problems in particle physics. 

Another method for robust guidance in space 

guidance problems is also investigated and proposed 

based on the high-order differential algebra method 

in [21]. In this method, the general concepts of the 

reference [19] are preserved, and the optimal control 

problem for generating guidance commands is 

solved. 

The difference is that this time the researchers have 

aimed to calculate the correction of the guidance 

command due to the deviation in the state variable. 

This article examines two examples: the first 

example is the problem of spacecraft guidance with 

continuous propulsion from Earth to Mars, and the 

second example is similar to the problem of using 

drag to reduce speed during the trip to Mars, which 

was also studied in the previous reference. 

In [22], a similar method to previous references has 

been implemented for several different examples, 

and the governing equations of the desired guidance 

problem dynamics have been extracted. In another 

study, the problem of interest is modeled with 

limited values of propulsion force using the 

differential algebra method in [23]. 

The reason for considering this change in modeling 

the problem is that if the constraint on the size of the 

propulsion force in guidance is not taken into 

account, the size of the guidance command is likely 

to be large at the beginning of the problem, and in 

real-world problems, it is necessary to limit this 

value because it is beyond the physical capabilities 

of an implementation. 

One of the other interesting applications of high-

order extrapolation and the use of differential 

algebra is presented in [24]. 

Another application of high-order extrapolation and 

the use of differential algebra in its computation is 

studied in [25], where the problem of transferring a 

spacecraft from the Lagrange point towards the 

moon and its collision with the moon to destroy the 

spacecraft is considered. 

Since this maneuver is the last possible maneuver 

for the spacecraft, which may be due to its being out 

of order or similar reasons, fuel is naturally limited 

for this maneuver, and multiple orbital corrections 

are not possible. Therefore, the designated path for 

this mission must be precise. Sometimes, a change 

or deviation in the final time of the problem is also 

likely to have a non-negligible effect on solving the 

dynamic equations of the problem. 

In [26], by normalizing the time variable, a state 

variable is added to the sum of the problem 

variables, with the initial value of this variable 

representing the nominal time. Then, the deviation 

from this value is considered a parameter, and the 

deviation from the final time in the problem is easily 

modeled. A study in [27] has shown the advantage 

of using high-order differential algebraic 

extrapolation for this purpose. 

In this study, the deviation from the reference path 

due to the mentioned disturbances has been 

predicted for six different bodies using fourth-order 

differential algebraic extrapolation. These bodies 

are in various orbits, and their deviation due to initial 

disturbances has been studied. 

Then, this study was completed in [28-29], and in 

this study, the probability of collision was estimated 

using Monte Carlo analysis. Recently, in [30], this 

issue has also been studied in the software package 

(MISS) under the COMPASS project of the 

European Union, in which methods for analyzing 

the probability of collision between spacecraft or 

satellites with each other or with space debris have 

been studied. 

A different approach to high-order extrapolation, 

called Vector High-Order Expansion (VHOE), is 

introduced in [31] by considering the optimal 

control problem for guiding an unmanned aerial 

vehicle during the landing phase. In this method, 

differential algebra is not used, and the necessary 

mathematical structure for performing calculations 

has been implemented by introducing sensitivity 

variables. 

In [32], the line-of-sight equations are used to 

extract a guidance law for an unmanned aerial 

vehicle that performs consecutive maneuvers to pass 

through predetermined points. Finally, high-order 

vector extrapolation in [33] is used to design an 
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almost optimal guidance law. In [35, 34], the authors 

used high-order extrapolation for the vertical 

landing problem of a satellite on Falcon 9 and 

compared it with various methods, including SDRE. 

Also, in [36], a method for online updating of VHOE 

is introduced. In this study, the desired problem is 

modeled in optimal control, and its mission is to 

guide the spacecraft to enter the atmosphere at high 

speed to reduce its speed and then exit it at a specific 

final time and conditions. 

This article investigates the design of an optimal 

guidance law for the satellite problem, considering 

constrained final conditions and time. This guidance 

law not only establishes a measure of optimality but 

also has minimal sensitivity to large initial state 

deviations because the effect of nonlinear terms in 

the mathematical model of the guidance problem is 

considered using high-order extrapolation. In 

section 2, the problem formulation is presented, and 

a mathematical model for solving the satellite 

problem in three dimensions is provided. After 

obtaining the nominal solution to the problem using 

the GPOPS extension in section 3, the problem is 

solved considering deviations in the initial 

conditions. In section 4, a simulation of the nominal 

path with a path-tracking regulator is examined, and 

in section 5, after obtaining the guidance law using 

high-order vector extrapolation with the help of the 

Taylor series, a Monte Carlo simulation is 

performed to examine this guidance law with 2,000 

runs. Finally, it is shown that the guidance law based 

on high-order vector extrapolation using the Taylor 

series is not only sufficiently accurate but can also 

be a good alternative to the nominal path-tracking 

problem. 

Problem Formulation 

To solve the satellite guidance problem and meet its 

related requirements using orthogonal functions, 

two different mathematical models will be 

introduced. The first mathematical model will be 

used to implement a 3-degree-of-freedom 

simulation and linearization for use in the 

implementation of a regulator. However, the second 

mathematical model will be used to solve the 

guidance problem, namely to extract the optimal 

guidance path and commands and to extract the 

sensitivities (using both Taylor series expansion and 

orthogonal functions). 

 

Figure 1: Schematic diagram of the circuit injection 

problem  [19]. 

Mathematical model for simulation 

Assuming a particle in this case, Newton's second 

law has been applied in the Cartesian inertial system 

at the injection point, and the motion equations for 

3D are presented in the form of equation (1), 

(1) 

�̇� = 𝑣𝑥
�̇� = 𝑣𝑦
�̇� = 𝑣𝑧

𝑣�̇� =
𝐿 cos 𝛾 cos 𝜒−Ysin 𝜒 − 𝐷 sin 𝛾 cos 𝜒

𝑚
+
𝑇𝑥
𝑚

𝑣�̇� =
𝐿 cos 𝛾 sin 𝜒 + 𝑌 cos 𝜒 − 𝐷 sin 𝛾 sin 𝜒

𝑚
+
𝑇𝑦

𝑚

𝑣�̇� =
−𝐿 sin 𝛾 − 𝐷 cos 𝛾

𝑚
+ 𝑔 +

𝑇𝑧
𝑚

�̇� = −
√𝑇𝑥

2 + 𝑇𝑦
2 + 𝑇𝑧

2

𝐼𝑠𝑝𝑔0

�̇� = 𝛼𝑟𝑎𝑡𝑒
�̇� = 𝛽𝑟𝑎𝑡𝑒

 

In these equations, 𝑥 ,   𝑦 ,   𝑧 ,  𝑣𝑥,  𝑣𝑦  ,  𝑣𝑧 ,  𝑚 ,   𝛼 , 𝛽 

are the state variables of the problem, and 𝛼𝑟𝑎𝑡𝑒, 

𝛽𝑟𝑎𝑡𝑒, 𝑇𝑥, 𝑇𝑦, and 𝑇𝑧 are the control variables that 

will be used for booster guidance. The selected 

control variables are the rates of change of the attack 

angle, the side-slip angle, and the thrust force in the 

horizontal, out-of-plane, and vertical directions, 

respectively. A liquid-fueled satellite booster engine 

is considered. 

In this set of equations, density and gravity are 

related by the following equations : 

(2) 𝑔 = 𝑔0 (
𝑅𝐸

𝑅𝐸 − 𝑧
)
2

, 𝜌 = 𝜌0𝑒
−
ℎ

ℎ0 

In this equation, h is equal to -z, where ℎ0 =

7.5𝑘𝑚 km and 𝜌0 = 1.225
𝑘𝑔

𝑚3 are respectively the 

reference altitude and sea level density, and 𝑔0 is the 
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gravitational acceleration at zero altitudes, which is 

equivalent to 9.81
𝑚

𝑠2
. 𝑅𝐸 = 6378 𝑘𝑚 is the radius of 

the Earth, which is equal to 𝑅𝐸 = 6378 𝑘𝑚. L, D, 

and Y represent lift, drag, and side force, 

respectively . 

Mathematical model for solving the 3D satellite 

guidance problem 

Now in this section, a mathematical model is 

presented for the satellite guidance problem, which 

is slightly different from the simulation model. This 

model is based on the implementation of Newton's 

second law in the implementation path system, 

while the previous model was extracted in the 

inertial system connected to the Earth. According to 

[19], the mathematical model is in the form of the 

following. 

(3) 

�̇� = 𝑣 sin 𝛾 cos𝜒
�̇� = 𝑣 sin 𝛾 sin 𝜒
�̇� = 𝑣 cos 𝛾

�̇� = −
𝐷

𝑚
+ 𝑔 cos𝛾 +

𝑇

𝑚
cos𝛼 cos𝛽

�̇� =
𝑌

𝑚𝑣 sin 𝛾
+
𝑇cos𝛼 sin𝛽

𝑚𝑣 sin 𝛾

�̇� =
𝐿

𝑚𝑣
+
𝑇 𝑠𝑖𝑛 𝛼

𝑚𝑣
−
𝑔

𝑣
sin 𝛾

�̇� = 𝛼𝑟𝑎𝑡𝑒
�̇� = 𝛽𝑟𝑎𝑡𝑒

�̇� = −
𝑇

𝐼𝑠𝑝𝑔0

𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 

In this equation, the state variables x, y, z, v, χ, γ, α, 

β, and m represent the range, lateral deviation, 

altitude, speed magnitude, heading angle, flight path 

angle, attack angle, side-slip angle, and mass, 

respectively. On the other hand, 𝛼𝑟𝑎𝑡𝑒 and 𝛽𝑟𝑎𝑡𝑒 are 

the control variables of the problem, which represent 

the attack angle rate and the side-slip angle rate, 

respectively. Note that T is the thrust, the value of 

which should be selected. It is also assumed that the 

thrust vector is aligned with the satellite's 

longitudinal axis and its magnitude is constant. 

Finally, the equations related to the calculation of 

aerodynamic forces are considered as follows : 

(4) 

𝐿 =
1

2
𝜌𝑣2𝑠𝐶𝐿𝛼 sin 2𝛼

𝐷 =
1

2
𝜌𝑣2𝑠𝐶𝐷0

𝑌 =
1

2
𝜌𝑣2𝑠𝐶𝐿𝛼 sin 2𝛽

 

Nominal solution of the guidance problem 

The first step in solving the high-order guidance 

problem is to extract the nominal solution of the 

problem. GPOPS will be used for this purpose. It 

should be noted that, like variable mass simulation, 

the problem is solved in GPOPS. In the specific 

problem, the goal is to satisfy the injection 

conditions in the orbit, taking into account the initial 

conditions with a range of 900 kilometers, a cross-

range of 30 kilometers, and a height of 50 

kilometers, while the initial mass is 25000 kilograms 

and the target orbit height is 200 kilometers. In 

addition, the initial values of velocity, angle of 

attack, side slip angle, flight path angle, heading 

angle, mission time, and thrust size are determined 

by GPOPS to optimally calculate these values 

during the optimization process. All values, 

parameters, and aerodynamic coefficients are 

adapted from reference [19]. To obtain the solution 

using GPOPS, cost function (5) is defined . 

(5) 
𝐽 = ∫ {

1

2
𝛼2 +

1

2
𝛽2 +

1

2
100𝛼𝑟𝑎𝑡𝑒

2
𝑡𝑓

0

+
1

2
100𝛽𝑟𝑎𝑡𝑒

2 } 𝑑𝑡 

In this cost function, the angle of attack, side slip 

angle, and all control variables are weighted. In 

addition, all control variables are considered to 

perform the orbital injection operation with 

minimum angle of attack and side slip and minimum 

rotation rate. The optimization results are shown in 

the following graphs. To extract this nominal 

trajectory, the complete form of the problem 

equations is considered in terms of density, gravity, 

and variable mass, and the modeling is also three-

dimensional. The final conditions are as follows : 
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(6) 

𝑥(𝑡𝑓) = 0

𝑦(𝑡𝑓) = 0

𝑧(𝑡𝑓) = 0

𝑣(𝑡𝑓) = √
𝜇

𝑅 + ℎ𝑜𝑟𝑏𝑖𝑡

𝛾(𝑡𝑓) =
𝜋

2
𝜒(𝑡𝑓) = 0

𝛼(𝑡𝑓) = 0

𝛽(𝑡𝑓) = 0

 

It is defined that according to this definition, the 

final value of the range and the cross-range are zero, 

while the final height is considered to be 200 

kilometers (i.e., z is equal to zero). The final velocity 

is also considered to be equal to the velocity required 

for a circular orbit at an altitude of 200 kilometers. 

Finally, after solving GPOPS, in addition to 

obtaining the initial and final values of the state 

variables assigned to GPOPS, the total mission time, 

the time history of all state variables, pseudo-state, 

and control variables are determined by GPOPS. 

Figure (2) shows the 3D trajectory and its time 

history . 

 
 

 
Figure 2: shows the nominal 3D trajectory from three 

views. 

Solving the optimal control problem with 

deviation in initial conditions 

Now, deviations in the initial conditions of the 

problem are to be considered. Real-world problems 

are always prone to disturbances and uncertainties. 

Therefore, if the initial conditions at the time of 

implementing the guidance law, for example, in the 

implementation of a real-world problem or 

simulation, are different from the nominal value, the 

application of the optimal control command 

obtained in the previous step will lead to significant 

deviations in the final conditions. The second 

objective of this problem is to provide a method for 

compensating for these deviations. A common 

solution is to use famous methods such as LQ, 

SDRE, MPC, and other similar methods for tracking 

the nominal trajectory . 
These methods are widely used in practice, but the 

main problem is that returning to the nominal 

trajectory, especially when the initial deviation is 

large, is not optimal. However, assuming that the 

problem with the deviated initial conditions is itself 

a new optimal control problem, a better solution is 

to find a new optimal path and replace it with the 

previous optimal path. However, it should be noted 

that solving the optimal control problem again 

should be done online, and the use of numerical 

methods such as spectral methods is not cost-

effective in terms of time and computational cost. 

Additionally, due to the iterative nature of numerical 

solutions, the possibility of solution divergence 

exists. However, a suitable method to solve this 

problem is to replace the nominal trajectory using 

the high-order expansion method, which has an 

offline computational burden. But with one 

calculation of the coefficients, it can be used online, 

and depending on the size of the initial deviation, the 

optimal control command and optimal trajectory can 

be replaced. The implementation of this method will 

be discussed in the next section . 

High-order vector expansion for multi-variable 

problems 

This section introduces an effective mathematical 

tool for modeling multi-variable problems in the 

form of high-order vector expansion, and the 

necessary algorithms for implementing this method 

are presented. Therefore, with the definition of 

operators, the appearance of the implementation of 

multi-dimensional problems will be similar to one-

dimensional problems because their calculations are 

implemented in the form of matrix-vector equations. 

With this method, even the Taylor series for a 

function with multiple independent variables can be 

represented as a simple equation. Let us assume that 

the problem under consideration for Taylor series 

expansion is a dynamic problem (e.g., optimal 
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control) with two variables (e.g., a state variable and 

a pseudo-state variable) : 

(7) �̇� = 𝑓(𝑥, 𝜆) 

�̇� = 𝑔(𝑥, 𝜆) 

Now, with the Taylor series expansion 

(8) 

�̇� = 𝑓(𝑥𝑛, 𝜆𝑛) +
𝜕𝑓

𝜕𝑥
𝛿𝑥 +

𝜕𝑓

𝜕𝜆
𝛿𝜆 +

1

2

𝜕2𝑓

𝜕𝑥2
𝛿𝑥2

+
1

2

𝜕2𝑓

𝜕𝑥𝜕𝜆
2𝛿𝑥𝛿𝜆

+
1

2

𝜕2𝑓

𝜕𝜆2
𝛿𝜆2 +⋯ 

 

 

�̇� = 𝑔(𝑥𝑛, 𝜆𝑛) +
𝜕𝑔

𝜕𝑥
𝛿𝑥 +

𝜕𝑔

𝜕𝜆
𝛿𝜆

+
1

2

𝜕2𝑔

𝜕𝑥2
𝛿𝑥2

+
1

2

𝜕2𝑔

𝜕𝑥𝜕𝜆
2𝛿𝑥𝛿𝜆

+
1

2

𝜕2𝑔

𝜕𝜆2
𝛿𝜆2 +⋯ 

 
(9) �̇�

= 𝑓(𝑥𝑛, 𝜆𝑛) + [
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝜆
] [
𝛿𝑥
𝛿𝜆
]

+ [
1

2

𝜕2𝑓

𝜕𝑥2
1

2

𝜕2𝑓

𝜕𝑥𝜕𝜆

1

2

𝜕2𝑓

𝜕𝜆2
] [

𝛿𝑥2

2𝛿𝑥𝛿𝜆
𝛿𝜆2

] + ⋯ 

 �̇�

= 𝑔(𝑥𝑛, 𝜆𝑛) + [
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝜆
] [
𝛿𝑥
𝛿𝜆
]

+ [
1

2

𝜕2𝑔

𝜕𝑥2
1

2

𝜕2𝑔

𝜕𝑥𝜕𝜆

1

2

𝜕2𝑔

𝜕𝜆2
] [

𝛿𝑥2

2𝛿𝑥𝛿𝜆
𝛿𝜆2

] + ⋯ 

These equations can still be written in a more 

compact form as below, 

(10) 

[
�̇�
�̇�
]

= [
𝑓(𝑥𝑛, 𝜆𝑛)

𝑔(𝑥𝑛, 𝜆𝑛)
] + [

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝜆
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝜆

] [
𝛿𝑥
𝛿𝜆
]

+

[
 
 
 
1

2

𝜕2𝑓

𝜕𝑥2
1

2

𝜕2𝑓

𝜕𝑥𝜕𝜆

1

2

𝜕2𝑓

𝜕𝜆2

1

2

𝜕2𝑔

𝜕𝑥2
1

2

𝜕2𝑔

𝜕𝑥𝜕𝜆

1

2

𝜕2𝑔

𝜕𝜆2 ]
 
 
 

[
𝛿𝑥2

2𝛿𝑥𝛿𝜆
𝛿𝜆2

] + ⋯ 

And finally, assuming that  𝜹𝑧 = [𝛿𝑥 𝛿𝜆]𝑇, 

equation (10) can be written in a very concise form 

using complete vector expansion [31-33]: 

(11) 
[
�̇�
�̇�
] = [

𝑓(𝑥𝑛, 𝜆𝑛)

𝑔(𝑥𝑛, 𝜆𝑛)
] + 𝚫1〈𝜹𝑧〉

1

+ 𝚫2〈𝜹𝑧〉
2 

 

(12) 𝚫1 = [

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝜆
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝜆

] 

 𝚫2 =

[
 
 
 
1

2

𝜕2𝑓

𝜕𝑥2
1

2

𝜕2𝑓

𝜕𝑥𝜕𝜆

1

2

𝜕2𝑓

𝜕𝜆2

1

2

𝜕2𝑔

𝜕𝑥2
1

2

𝜕2𝑔

𝜕𝑥𝜕𝜆

1

2

𝜕2𝑔

𝜕𝜆2 ]
 
 
 

 

If we move a nominal part to the left-hand side of 

the equation and simplify it, it yields : 

(13) [𝛿�̇�
𝛿�̇�
] = 𝚫1〈𝜹𝑧〉

1 +𝚫2〈𝜹𝑧〉
2 +⋯ 

Here, 〈𝜹𝑧〉1𝑜𝑝𝑒𝑛 − 𝑎𝑛𝑔𝑙𝑒 refers to the vector 

expansion of order 1 and higher. Since what comes 

next holds true, 

(14) [𝛿�̇�
𝛿�̇�
] =

𝑑

𝑑𝑡
𝜹𝑧 =

𝑑

𝑑𝑡
〈𝜹𝑧〉1 

Finally the following is obtained, 

(15) 

〈𝜹�̇�〉1 = 𝚫1〈𝜹𝑧〉
1 + 𝚫2〈𝜹𝑧〉

2 +⋯ 

〈𝜹�̇�〉1 =∑𝚫𝑖〈𝜹𝑧〉
𝑖

𝑚

𝑖=1

 

General Solution of High-Order Optimal 

Control Problems 

Assuming that the optimal control problem is in the 

following form: 

(16) 
�̇� = 𝑓(𝒔, 𝝀) 

�̇� = 𝑔(𝒔, 𝝀) 

In this model, it is assumed that the optimal control 

commands are explicitly calculable functions of the 

state and pseudo-state variables and can be 

substituted into the problem to write the dynamic 

equations in the above form. In equation (16), s and 

λ are vectors of state and pseudo-state variables, 

respectively, each with n elements. Also, the 

functions f and g are differentiable up to any desired 
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order m. Now, assuming that 𝒛 = [𝒔 𝝀]𝑇, the 

above set of equations can be summarized in the 

following equation : 

(17) �̇� = ℎ(𝒛) 

In the next step, assuming that the nominal values 

for s and λ are known, the right-hand side of the 

above equation is expanded in a Taylor series 

around the nominal solution up to any desired order 

m, and then the nominal solution values are 

eliminated from both sides of the equation. 

Therefore : 

(18) 𝜹�̇� =∑𝚫𝑖〈𝜹𝑧〉
𝑖

𝑚

𝑖=1

 

In the above equation, the Taylor series expansion is 

written using vector expansion as described, so 𝜟𝑖 
in this equation is a matrix with time-varying 

elements (since the Taylor series expansion is 

around the nominal solution) representing the 

coefficients of the Taylor series corresponding to the 

dimensions of the 〈𝜹𝑧〉𝑖 vector. Furthermore, 𝜹𝑧 =
[𝜹𝑠 𝜹𝜆]𝑇 represents the deviations of the state and 

pseudo-state variables from their nominal values, as 

defined earlier . 
It is assumed here that in the defined optimal control 

problem, the initial and final conditions of the state 

variables are constrained. The goal is to extract δλ 

and δs for a general value of 𝜹𝑠(0) = 𝜹𝑠0, subject 

to the condition that 𝜹𝑠(𝑡𝑓) = 𝜹𝑠𝑓 = 0. 
For a specific value of 𝜹𝑠0, equation (18), which is 

a boundary value problem with separate values, can 

be solved using numerical methods. However, if 

𝜹𝑠0changes, the problem must be solved again for 

this new value. To address this issue, it is assumed 

that δλ and δs are functions of an indeterminate form 

(which must be determined) of 𝜹𝑠0 (which is the 

initial deviation) : 

(19) 
𝜹𝑠 = 𝜹𝑠(𝜹𝑠0) 

𝜹𝜆 = 𝜹𝜆(𝜹𝑠0) 

As a result, it can be written for 𝜹𝑧 : 

(20) 𝜹𝑧 = 𝜹𝑧(𝜹𝑠0) 

Now, similar to the assumption made for the 

expansion of equation (17), here equation (20) is 

also rewritten in terms of a Taylor series using 

vector expansion: 

(21) 𝜹𝑧 =∑𝚿𝑖〈𝜹𝑠0〉
𝑖

𝑚

𝑖=1

 

In this equation, 𝜳𝑖 is the matrix of Taylor series 

coefficients that are indeterminate and time-varying. 

These coefficients are known as sensitivity 

coefficients. In other words, by obtaining these 

coefficients, 𝜹𝑧 can be calculated for different 

values of 𝜹𝑠0, and these coefficients indicate the 

sensitivity of the state and pseudo-state variable 

deviations to the initial state deviation. To obtain the 

sensitivity coefficients, equation (21) is substituted 

into equation (17). After performing the calculations 

and equating terms with equal powers, it can be seen 

that 𝜹𝑠0 is eliminated from the calculations, and the 

following set of equations can be presented to 

calculate the sensitivity of order i: 
(22) �̇�𝑖 = 𝚫1𝚿𝑖 +𝛀𝑖 

Where 𝜴𝑖 is the nonhomogeneous matrix of linear 

differential equations provided for the sensitivities. 

For 𝑖 = 1, the nonhomogeneous part is equal to 

zero, and for 𝑖 > 1, this value is calculated in terms 

of lower-order sensitivities. Further details on the 

calculation method can be found in references 

[31,32]. 

Therefore, to calculate the sensitivity matrices, 

starting from 𝑖 = 1, 𝚿1 can be calculated, and then 

in the next step, after calculating 𝛀2 in terms of 𝚿1, 

𝚿2 can be calculated. Consequently, these steps can 

be continued until 𝚿𝑚 is calculated. Finally, with 

the sensitivities available, 𝜹𝜆 and 𝜹𝑠 can be 

calculated for each 𝜹𝑠0 based on equation (21). 

Suppose that by solving the corresponding 

differential equations, the sensitivity matrices are 

extracted. Now these matrices are separated into 

upper and lower blocks (from the middle) as 

follows, 

(23) 𝜹𝑧 =∑[
𝚿𝑖
𝑈

𝚿𝑖
𝐿 ] 〈𝜹𝑠0〉

𝑖

𝑚

𝑖=1

 

Where the upper block 𝚿𝑖
𝑈 and the lower block 𝚿𝑖

𝐿 

are separated from the matrix, since : 

(24) 𝜹𝑧 = [
𝜹𝑠
𝜹𝜆
] 

As a result, 

(25) [
𝜹𝑠
𝜹𝜆
] =∑[

𝚿𝑖
𝑈

𝚿𝑖
𝐿 ] 〈𝜹𝑠0〉

𝑖

𝑚

𝑖=1
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By separating the terms, it can be written as follows, 

(26) 

𝜹𝑠 =∑𝚿𝑖
𝑈〈𝜹𝑠0〉

𝑖

𝑚

𝑖=1

 

𝜹𝜆 =∑𝚿𝑖
𝐿〈𝜹𝑠0〉

𝑖

𝑚

𝑖=1

 

Where the first equation is for the state variables and 

the second equation is for the pseudo-state variables. 

Now, only the equation related to the state variable 

is considered (since the description of the 

sensitivities for the pseudo-state variables is 

similar). By expanding this equation the following 

is achieved, 

(27) 𝜹𝑠 = 𝚿1
𝑈〈𝜹𝑠0〉

1 +𝚿2
𝑈〈𝜹𝑠0〉

2 +⋯ 

If we assume that the problem has two state 

variables, then 𝜹𝑠 = [𝛿𝑥 𝛿𝑦]𝑇, and the sensitivity 

matrix 𝚿𝑖will be a 2x2 matrix with indeterminate 

and time-varying coefficients . 

(28) [
𝛿𝑥
𝛿𝑦
] = 𝚿1

𝑈〈𝜹𝑠0〉
1 +𝚿2

𝑈〈𝜹𝑠0〉
2 +⋯ 

Therefore, based on that , 

(29) [
𝛿𝑥
𝛿𝑦
] = 𝚿1

𝑈 [
𝛿𝑥0
𝛿𝑦0

] +𝚿2
𝑈 [

𝛿𝑥0
2

2𝛿𝑥0𝛿𝑦0
𝛿𝑦0

2

] +⋯ 

By writing the sensitivity matrices in terms of their 

components : 

(30) 

[
𝛿𝑥
𝛿𝑦
]

= [
𝑆𝛿𝑥0
𝑥 𝑆𝛿𝑦0

𝑥

𝑆𝛿𝑥0
𝑦

𝑆𝛿𝑦0
𝑦 ] [

𝛿𝑥0
𝛿𝑦0

]

+ [
𝑆𝛿𝑥02
𝑥 𝑆𝛿𝑥0𝛿𝑦0

𝑥 𝑆𝛿𝑦02
𝑥

𝑆
𝛿𝑥0

2
𝑦

𝑆𝛿𝑥0𝛿𝑦0
𝑦

𝑆
𝛿𝑦0

2
𝑦 ] [

𝛿𝑥0
2

2𝛿𝑥0𝛿𝑦0
𝛿𝑦0

2

]

+ ⋯ 

Now, by selecting each row, the key equation for 

calculating the deviations (in terms of initial 

deviations and sensitivities) for each state variable 

can be obtained. For example, for δx, it yields : 

(31) 

𝛿𝑥 = 𝑆𝛿𝑥0
𝑥 𝛿𝑥0 + 𝑆𝛿𝑦0

𝑥 𝛿𝑦0

+ {𝑆𝛿𝑥02
𝑥 𝛿𝑥0

2

+ 𝑆𝛿𝑥0𝛿𝑦0
𝑦

2𝛿𝑥0𝛿𝑦0

+ 𝑆
𝛿𝑦0

2
𝑦
𝛿𝑦0

2 +⋯} 

This process can be carried out for all the state and 

pseudo-state variables, and the deviation values can 

be calculated at all times based on the initial 

deviations and sensitivities . 
Now that the sensitivity coefficients have been 

extracted, they can be used to obtain the following, 

(32) {
𝑠𝑛
𝑛𝑒𝑤(𝑡) = 𝑠𝑛

𝑜𝑙𝑑(𝑡) + 𝛿𝑠(𝑡)

𝜆𝑛
𝑛𝑒𝑤(𝑡) = 𝜆𝑛

𝑜𝑙𝑑(𝑡) + 𝛿𝜆(𝑡)
 

In simple terms, this means that by adding the 

computed deviation values to the nominal solution, 

a new nominal solution can be obtained. Therefore, 

since 𝜆𝑛
𝑛𝑒𝑤 has been extracted, the new nominal 

control command can also be obtained using 

𝑢𝑛
𝑛𝑒𝑤 = −

𝐵

𝑟
𝜆𝑛
𝑛𝑒𝑤. 

If the cost function is quadratic and the control is 

affine, this equation can be used, where B is the 

control variable coefficient in the differential 

equations and R is the control variable weighting 

matrix in the cost function. For more details on the 

implementation of the high-order vector 

extrapolation method for multi-variable systems, 

readers can refer to  [31-33]. 

Simulation of Nominal Path with Path Following 

Regulator 

In the previous section, the nominal solution for the 

injection problem was obtained using GPOPS 

software, and its path was presented. Here, this 

nominal solution is used in the simulation and a 

linear LQ regulator is implemented to execute the 

commands of this solution. Note that in the GPOPS 

simulation and solution, the satellite mass is variable 

based on the engine thrust, and its changes are fully 

considered. However, numerical solutions of the 

open-loop optimal control problem always have 

numerical errors, albeit small ones. These errors will 

become significant if a regulator is not used. 

Therefore, an LQ regulator is used here to follow the 

nominal path and compensate for computational 

errors. In total, 8 state variables and 5 control 

variables are defined for the tracking problem . The 
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block diagram for implementing path guidance and 

tracking is presented in Figure  (3). 

 

Figure 3: Block diagram of path guidance and pursuit 

implementation. 

Moreover, 8 separate simulations were performed. 4 

simulations were conducted with initial deviation 

only in position, and 4 simulations were conducted 

with initial deviation only in speed. The 3D path of 

motion is shown in Figure (4). Deviations of 1 and 

1- kilometers were considered in the x-direction, and 

deviations of 2 and 2- kilometers were considered in 

the transverse direction. For deviations in speed, 

values of 10 and 10 meters per second were 

considered in the z-channel, and 15 and 15 meters 

per second were considered in the y-channel. The 

satellite, with the help of an LQ regulator, attempted 

to compensate for these deviations and converge to 

the injection point in orbit. Table 1 shows the initial 

deviations . 
Table 1: Initial deviations for single-run scenario 

simulations 

S.N. 𝛿𝑣𝑧0[
𝑚

𝑠
] 𝛿𝑣𝑦0[

𝑚

𝑠
] 𝛿𝑦0[𝑚] 𝛿𝑥0[𝑚] 

1 0 0 0 1000 

2 0 0 0 -1000 

3 0 0 2000 0 

4 0 0 -2000 0 

5 0 15 0 0 

6  -15 0 0 

7 10 0 0 0 

8 -10 0 0 0 

 
Figure 4: 3D path for initial position deviations . 

In the above figures, only nominal path tracking has 

been performed, and no new optimal path has been 

generated. In the following, using the high-order 

vector expansion method based on the Taylor series, 

the optimal path without pursuit has been extracted . 

Extraction of guidance law using high-order 

expansion method with the help of the Taylor 

series 

Now that the nominal solution has been extracted 

and its quality has been examined, in this section, 

the third-order solution of the 3D injection problem 

is extracted and several simulation scenarios are 

then conducted. For the first step, the nonlinear 

problem needs to be approximated with the Taylor 

series, and the equations in their standard form 

should be presented. Given the cost function in 

equation (5), if the Hamiltonian is in the form shown 

below, 

(33) 

𝐻 =
1

2
𝛼2 +

1

2
𝛽2 +

1

2
100𝛼𝑟𝑎𝑡𝑒

2

+
1

2
100𝛽𝑟𝑎𝑡𝑒

2 + 

𝜆𝑥{𝑣 sin 𝛾 cos 𝜒} + 𝜆𝑦{𝑣 sin 𝛾 sin 𝜒} + 

𝜆𝑧{𝑣 cos 𝛾} + 𝜆𝑣 {−
𝐷

𝑚
+ 𝑔 cos 𝛾

− 𝑇′ cos𝛼 cos𝛽} + 

𝜆𝜒 {
𝑌

𝑚𝑣 sin 𝛾
−
𝑇′cos𝛼 sin 𝛽

𝑣 sin 𝛾
} + 

𝜆𝛾 {
𝐿

𝑚𝑣
−
𝑇′ 𝑠𝑖𝑛𝛼

𝑣
−
𝑔

𝑣
sin 𝛾} + 

𝜆𝛼{𝛼𝑟𝑎𝑡𝑒} + 𝜆𝛽{𝛽𝑟𝑎𝑡𝑒} 

Now, the standard form of the high-order problem 

for solution is as follows, 
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(34) 

{
 
 
 
 
 
 

 
 
 
 
 
 

�̇� = ℎ𝑥 = 𝑣 sin 𝛾 cos 𝜒
�̇� = ℎ𝑦 = 𝑣 sin 𝛾 sin 𝜒

�̇� = ℎ𝑧 = 𝑣 cos 𝛾

�̇� = ℎ𝑣 = −
𝐷

𝑚
+ 𝑔 cos𝛾 −

𝑇

𝑚
cos𝛼 cos𝛽

�̇� = ℎ𝜒 =
𝑌

𝑚𝑣 sin 𝛾
−
𝑇 cos𝛼 sin𝛽

𝑚𝑣 sin 𝛾

�̇� = ℎ𝛾 =
𝐿

𝑚𝑣
−
𝑇 𝑠𝑖𝑛 𝛼

𝑚𝑣
−
𝑔

𝑣
cos 𝛾

 
�̇� = ℎ𝛼 = 𝛼𝑟𝑎𝑡𝑒
�̇� = ℎ𝛽 = 𝛽𝑟𝑎𝑡𝑒

 

  

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝜆�̇� = ℎ𝜆𝑥 = −

𝜕𝐻

𝜕𝑥

𝜆�̇� = ℎ𝜆𝑦 = −
𝜕𝐻

𝜕𝑦

𝜆�̇� = ℎ𝜆𝑧 = −
𝜕𝐻

𝜕𝑧

𝜆�̇� = ℎ𝜆𝑣 = −
𝜕𝐻

𝜕𝑣

𝜆�̇� = ℎ𝜆𝜒 = −
𝜕𝐻

𝜕𝜒

𝜆�̇� = ℎ𝜆𝛾 = −
𝜕𝐻

𝜕𝛾

𝜆�̇� = ℎ𝜆𝛼 = −
𝜕𝐻

𝜕𝛼

𝜆�̇� = ℎ𝜆𝛽 = −
𝜕𝐻

𝜕𝛽

,

{
 
 

 
 

𝜕𝐻

𝜕𝛼𝑟𝑎𝑡𝑒
= 0 → 𝛼𝑟𝑎𝑡𝑒
 

𝜕𝐻

𝜕𝛽𝑟𝑎𝑡𝑒
= 0 → 𝛽𝑟𝑎𝑡𝑒

 

is presented. The first part of this equation provides 

the differential equations for the state variables and 

defines ℎ𝑥 to ℎ𝛽, in which the control variables must 

be substituted into both sets of differential equations 

for the state and the pseudo-state variables based on 

the optimality principle. The differential equations 

for the pseudo-state variables are provided above, 

and the definitions of ℎ𝜆𝑥 to ℎ𝜆𝛽 are also presented. 

Now, we can write : 

(35) {
𝑠𝑛
𝑛𝑒𝑤(𝑡) = 𝑠𝑛

𝑜𝑙𝑑(𝑡) + 𝛿𝑠(𝑡)

𝜆𝑛
𝑛𝑒𝑤(𝑡) = 𝜆𝑛

𝑜𝑙𝑑(𝑡) + 𝛿𝜆(𝑡)
 

This includes a total of 16 nonlinear equations, 

which need to be Taylor-expanded up to the third 

order concerning the 16 state and pseudo-state 

variables. Therefore, Δ𝑖 consists of 16 rows, where 

the first row corresponds to the derivatives of ℎ𝑥, the 

second row corresponds to the derivatives of ℎ𝑦, and 

so on up to ℎ𝜆𝛽. Next, the sensitivity equations 

should be solved after the model is extracted using 

the corresponding equation . 

 
Figure 5: Block diagram of implementing the 3-DOF 

guidance law using the high-order expansion method. 

Now, the simulation results are presented here. 

According to the table of single-run scenarios 

presented earlier, 8 different scenarios with different 

initial deviations, considering the calculated 

sensitivities using the Taylor series expansion, have 
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been simulated. It can be seen that the results are 

qualitatively different from similar simulations that 

only converged to the nominal path, where here the 

reference path is generated, and the satellite follows 

the reference path with the help of a tracker . 

 
Figure 6: 3D path using high-order Taylor series 

expansion for initial position deviations. 

 Monte Carlo simulation 

To evaluate the guidance law, Monte Carlo 

simulations are necessary as relying on a few 

simulations is not sufficient for a comprehensive 

evaluation. Therefore, Monte Carlo simulation is 

performed for the guidance law. For the Monte 

Carlo simulation, it is assumed that the deviation in 

x ranges from -1000 to 1000 meters, for y from -

2000 to 2000 meters, and for the velocity 

components 𝑣𝑦 and 𝑣𝑧 from -15 to 15 meters per 

second and -10 to 10 meters per second, 

respectively. In these Monte Carlo simulations, it is 

assumed that the simulation starts from an altitude 

of 50 kilometers, and as a result, the initial deviation 

in altitude is not considered. Moreover, since the 

mission's duration and the trust size are fixed, the 

guidance law has little flexibility concerning 

velocity deviations, and thus only brief deviations in 

the y and z directions are considered for velocity. As 

a result, the satellite's end-phase error should be 

budgeted according to the mission requirements, 

which limits the errors . 
This Monte Carlo simulation includes 2000 runs, 

where the initial deviation values are selected from 

a uniform distribution . 

 
Figure 7: Path curves for Monte Carlo simulation with 

high-order Taylor series guidance law. 

 
Figure 8: Velocity x-component curves for Monte Carlo 

simulation with high-order Taylor series guidance law. 

 
Figure 9: Velocity y-component curves for Monte Carlo 

simulation with high-order Taylor series guidance law. 
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Figure 10: Velocity z-component curves for Monte 

Carlo simulation with high-order Taylor series guidance 

law. 

Table 2: Final position and velocity errors for the 

guidance law. 

 
The results presented in Table 2 demonstrate the 

high accuracy of the high-order vector extrapolation 

method. In the case of the optimal guidance law for 

this mission, two important features are of interest: 

the first is the satisfaction of the position and 

velocity accuracy at the final point, and the second 

is the size of the cost function. So far, it has been 

shown that the position and velocity errors for the 

Taylor series-based guidance law have high quality 

based on statistical data. Now, the cost function is 

examined. The table below shows the statistical 

results for the total cost function, cost function for 

the tracker, final mass, and consumed mass (fuel 

mass). The Taylor series-based guidance law has 

shown high quality . 
Table 3: Cost function error 

Regulator Cost Total 

Cost  mean 

353.91 9189 standard 

deviation 
1186.3 9508 mean 

Conclusion 

The main objective of this research is to investigate 

the development and enhancement of the high-order 

expansion method for optimal guidance law design, 

and various implementations of this method have 

been examined using different approaches. After 

studying the implementation method and its 

concepts, the effectiveness of the high-order 

expansion method and its implementation has been 

investigated. In this study, satellite guidance has 

been considered, and the main goal is to achieve the 

minimum possible error at the final point. In this 

article, the problem of three-dimensional satellite 

guidance has been addressed, and after modeling 

and obtaining the optimal nominal solution, 

sensitivity variables have been extracted using the 

high-order expansion method up to the third order. 

To examine theoretical errors, 8 simulations with 

different initial deviations were performed. 

Subsequently, more comprehensive simulations 

were conducted to evaluate the quality of the high-

order expansion method in the presence of 

uncertainties and to assess the impact of higher-

order terms. The simulations were implemented by 

taking into account the variable's gravity, density, 

and mass. Finally, Monte Carlo simulations were 

used to compare the quality of the high-order 

expansion-based guidance law, and it was shown 

that the guidance law based on high-order expansion 

using the Taylor series is not only accurate but can 

also be a good substitute for the nominal trajectory 

tracking problem . 
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