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Inertial navigation amplifies the noise of the input sensors over 

time due to the presence of an integrator in the output path to 

determine the position and attitude of the object. This system has 

high bandwidth and good short-term accuracy. On the other hand, 

GPS navigation has low bandwidth, low noise processing power, 

and long-term accuracy. However, it can only determine the 

position and does not give us information about the object's attitude. 

Most papers have presented integrated algorithms related to 

GPS/INS tightly coupled navigation and have provided relatively 

acceptable results. Nevertheless, the main problem in this 

integration model is when there is an intentional or stochastical 

signal interference for GPS, which is not far from the mind in 

military applications. Therefore, navigation faces a problem. This 

article provides a solution with a tightly coupled integrated 

algorithm for high accuracy in integrated navigation. 

 
16. Oct. 2022 

Introduction 

In general, navigation is the science of determining 

the position and attitude of an object on land, air, or 

sea. Navigation is usually divided into two general 

forms, namely blind navigation and navigation 

using an external signal. Inertial navigation, which 

uses three accelerometer sensors and three 

gyroscope sensors to determine the position and 

attitude of the object, is placed under the first 

category, and navigation using GPS is placed under 

the second category. If the information is received 

from 3 GPS, the position is determined in two 

dimensions, i.e., the longitude and latitude of the 

object. Moreover, when it is received from 4 GPS, 

height is added to the position components of the 
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object, and the three-dimensional position of the 

object is determined. 

 Inertial navigation has fast dynamics, high 

bandwidth, and low sampling time. However, its 

input error increases and causes deviations in 

position, velocity, and output attitude. These 

problems are due to noise sources on its sensors, 

including accelerometer bias, gyroscope drift, and 

two integrators in the output path. Therefore, this 

type of navigation does not have good long-term 

accuracy despite good short-term accuracy. 

Hence, special inertial sensors with high accuracy 

and low noise are required for accurate navigation 

applications, which are very expensive. Also, their 

manufacturing and sales monopoly is in possession 

of several superior countries. Therefore, it is not 

easily accessible, especially in military applications. 

https://jast.ias.ir/article_159001.html
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GPS, on the other hand, has low bandwidth, high 

sampling time, and much more accurate positioning 

than inertial navigation in the long run. However, it 

can only determine the position and not the attitude. 

It also has limitations in speed and height in 

determining the position. For example, it is 

impossible to determine the position at speeds 

higher than 515 meters per second or altitudes 

higher than 18 kilometers due to restrictions 

imposed by manufacturing countries. 

In addition, the probability of signal interference in 

GPS signals in military wars is very high. Therefore, 

their information may be associated with 

interference [1-4]. 

Consequently, the scientists combined the 

navigation of inertial and GPS to use a variety of 

integrated algorithms to take advantage of both 

navigation systems and cover each other's 

disadvantages. Much work has been done over the 

years in the field of integrated inertial navigation 

and GPS. Although they can estimate the position, 

velocity, and attitude, accelerometer errors, and 

gyroscope errors, and improve their navigation 

accuracy, the design of integrated tightly coupled 

algorithms has been neglected. 

This paper estimates all states of flying objects with 

high accuracy by a tightly coupled integration 

algorithm. Compared to other methods, this method 

is related to acceptable estimation during the outage 

of GPS signal in a short or long time. They have not 

achieved the results with this precision among the 

gps outage signal. 

Sources of error in inertial navigation 

Sources of error in accelerometers: 

1- Fixed bias: 

 This error is a constant value equal to 𝑩𝒂, the 

amount of deviation of the accelerometer output 

from its ideal value, which is independent of time. 

∬ 𝑩𝒂𝒅𝝉 = 𝑩𝒂

𝒕𝟐

𝟐

𝒕

𝟎

 

2- White noise:  

This error adds a Random process noise with zero 

mean and 𝝈𝟐 variance to the value measured by the 

accelerometer. 

 
1 Velocity Random Walk 

Noise at the output will be a 2nd degree random 

walk with a mean of zero and the following standard 

deviation: 

𝝈𝒔(𝒕) = 𝝈 × 𝒕𝟑/𝟐 × √
𝜹𝒕

𝟑
 

This noise is usually the result of mechanical or 

thermal disturbances in accelerometers that appear 

as follows. 

3- Calibration:   

Errors known as non-alignment errors, conversion 

factor errors, and nonlinearity errors are generally 

included in this category. These errors are referred 

to as calibration errors that are proportional to the 

input. 

4- Bias instability: 

These errors indicate the amount of bias fluctuations 

over a period of time, which means how much the 

accelerometer bias changes over a period of time, 

such as in an hour or a second. These errors are also 

modeled as random walks (VRW1). 

Sources of error in gyroscopes: 

1- Fixed bias: 

 This error is a constant value equal to 𝑩𝒈, the 

amount of deviation of the gyroscope output from its 

ideal value, which is independent of time. 

∬ 𝑩𝒈𝒅𝝉 = 𝑩𝒈

𝒕𝟐

𝟐

𝒕

𝟎

 

2- White noise: 

This error adds a Random process noise with zero 

mean and 𝝈𝟐 variance to the value measured by the 

accelerometer. 

Noise at the output will be a first-degree random 

walk with a mean of zero and the following standard 

deviation: 

𝝈𝜽(𝒕) = 𝝈 × √𝜹𝒕 × 𝒕 

This noise is usually the result of mechanical or 

thermal disturbances in gyroscopes that appear as 

follows. 

Calibration:  

Errors known as non-alignment errors, conversion 

factor errors, and nonlinearity errors are generally 

included in this category. These errors are referred 
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to as calibration errors that are proportional to the 

input. 

Bias instability: 

These errors indicate the amount of bias fluctuations 

over a period of time, which means how much the 

Accelerometer bias change over a period of time, 

such as in an hour or a second. These errors are also 

modeled as random walks (ARW2). 

From the perspective of random processes, the 

sources of error in inertial navigation are divided 

into two general categories: 

1- deterministic 3 error sources: Parts 1 and 3 of the 

previous section fall into this category and can be 

removed by calibration. 

1- stochastic 4 error sources: Sections 2 and 4 of the 

previous section fall into this category and should be 

randomly modeled and removed by the Kalman 

filter or any optimal estimator. These sources of 

error are each divided into 2 categories: 

• Low frequency noises 

(Turn on bias + in run bias (bias drift)) 

• High frequency noises  

(Velocity random walk5 and angular random walk6 

noises) 

They are known as random walkers, and it is better 

to remove them from the system before entering the 

Kalman filter during the noise decomposition and 

denoising process. 

 An example of the types of noise mentioned above 

for different types of inertial navigation systems is 

as follows: 

Table 2-1: Specifications of different types of noise in 

different types of inertial navigation systems[8,9] 

 
 

2 Angular Random Walk 

3 Deterministic 

4 Stochastic 

Therefore, assuming the elimination of the fixed part 

of the errors through calibration, the general model 

of the output error of the accelerometer and 

gyroscope will be as follows: 

𝜹𝒇𝒃 = 𝜹𝒃 + 𝒘𝒇 

Where 𝛿𝑏 is the low frequency noise of 

accelerometer and 𝛿𝑏 is the high frequency noise of 

accelerometer. 

Therefore, the Gauss Markov Grade 1 model for low 

frequency noise of the accelerometer is as follows: 

𝛿�̇� = −𝛼𝛿𝑏 + 𝑤𝑏      𝑤𝑏=√2𝛼𝜎2𝑤(𝑡)      𝛼 =
1

𝜏𝑏𝑎
 

Where, σ is the noise of the Gauss-Markov process 

and τba is the correlation time. 

𝛿𝑤𝑏 = 𝛿𝑑 + 𝑤𝑤 

Where, 𝛿𝑑 is the low frequency noise of gyroscope 

and 𝑤𝑤 is the high frequency noise of gyroscope. 

Therefore, the Gauss Markov Grade 1 model for low 

frequency noise of the gyroscope is as follows: 

𝛿�̇� = −𝛽𝛿𝑑 + 𝑤𝑑           𝑤𝑑=√2𝛽𝜎2𝑤(𝑡)      𝛽 =
1

𝜏𝑏𝑔
 

Where σ is the noise of the Gauss-Markov process 

and τb𝑔 is the correlation time. 

 The parameters of the Gauss-Markov model are 

obtained as follows: after the static test of the inertial 

measuring unit (IMU) for a certain period of time, 

for example, 8 hours, the data obtained are first 

separated by high and low-frequency noise analysis 

methods and high-frequency noises are separated 

from the low-frequency noises.  

Then their autocorrelation function (ACS or ACF) is 

calculated. The autocorrelation function of Gauss-

Markov random processes is exponential (𝑅𝑏𝑏(𝜏) =

𝜎𝑏
2𝑒−𝛽1𝜏). Therefore, by adapting the Gauss-

Markov function of degree 1 to the autocorrelation 

curve obtained from the data, parameters and then 

the Gauss-Markov model The bottom is determined 

[5-10]. 

5 VRW 

6 ARW 
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Figure 2-1:   Gauss-Markov function curve of degree 

1[10] 

Modeling the state error in inertial 

navigation (previous estimate) 

According to the above, the following models for 

low frequency noise of accelerometer and gyroscope 

as well as 15-state model of system error were 

obtained: 

Grade 1 Gauss Markov model for accelerometers:  

[

𝑏1̇

𝑏2̇

𝑏3̇

]=

[
 
 
 
 

−1

𝜏𝑏𝑎𝑥
0 0

0
−1

𝜏𝑏𝑎𝑦
0

0 0
−1

𝜏𝑏𝑎𝑧]
 
 
 
 

[

𝑏1

𝑏2

𝑏3

]+

[
 
 
 
 √2𝛼𝑥𝜎

2

√2𝛼𝑦𝜎2

√2𝛼𝑧𝜎
2]
 
 
 
 

w(t)     

 

Grade 1 Gauss Markov model for gyroscopes:  

[

𝑑1̇

𝑑2̇

𝑑3̇

]=

[
 
 
 
 

−1

𝜏𝑏𝑔𝑥
0 0

0
−1

𝜏𝑏𝑔𝑦
0

0 0
−1

𝜏𝑏𝑔𝑧]
 
 
 
 

[

𝑑1

𝑑2

𝑑3

]+

[
 
 
 
 √2𝛽𝑥𝜎

2

√2𝛽𝑦𝜎2

√2𝛽𝑧𝜎
2]
 
 
 
 

w(t) 

 

15-State model for inertial navigation error:  

Position error model: 
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Attitude error model: 
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𝜔𝑖𝑛
𝑛 =
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Equations will also be true for accelerometers and 

gyroscopes [11-15]. 

We will reach the following model by aggregating 

the above relations: 

�̇�(𝑡) = 𝐹𝑋(𝑡) + 𝐺𝑤(𝑡) 

𝑤(𝑡) = 𝑁(0. 𝑄) 

[
 
 
 
 
�̇�
�̇�
�̇�
𝜹�̇�
𝜹�̇�]

 
 
 
 

=

[
 
 
 
 
 
𝑭𝒓𝒓 𝑭𝒓𝒗    𝟎        𝟎   𝟎 

𝑭𝒗𝒓 𝑭𝒗𝒗 𝒇𝒊𝒏
𝒏 × 𝑪𝒃

𝒏   𝟎

𝑭𝒆𝒓

𝟎
𝟎

𝑭𝒆𝒗

𝟎
𝟎

−𝝎𝒊𝒏
𝒏 ×
𝟎
𝟎

𝟎
−𝟏

𝝉𝒃𝒂

𝟎

−𝑪𝒃
𝒏

𝟎
−𝟏

𝝉𝒃𝒈 ]
 
 
 
 
 

[

𝒓
𝒗
𝜺
𝜹𝒃
𝜹𝒅

]+

[
 
 
 
 
𝟎 𝟎 𝟎 𝟎
𝑪𝒃

𝒏 𝟎 𝟎 𝟎

𝟎
𝟎
𝟎

𝑪𝒃
𝒏

𝟎
𝟎

𝟎 𝟎
𝑰 𝟎
𝟎 𝑰]

 
 
 
 

[

𝒘𝒇

𝒘𝒘
𝒘𝒃

𝒘𝒅

] 

 

To obtain the variance of the noises to use them in 

the Kalman filter,  

it is sufficient to obtain their autocorrelation 

function at zero due to their white characteristic, 

which is equal to the power signal. 

The power signal is equal to the sum of the squares 

of the mean and the variance of the noise. As the 

mean of the white noise is zero, the power will be 

the same as the variance of the noise. 

Q=

[
 
 
 
𝒒𝒂 𝟎 𝟎 𝟎
𝟎 𝒒𝒈 𝟎 𝟎

𝟎
𝟎

𝟎
𝟎

𝒒𝒃𝒂 𝟎
𝟎 𝒒𝒃𝒈]

 
 
 

 

𝒒𝒂=var(𝒘𝒇)                𝒒𝒃𝒂= var(𝒘𝒃) = √𝟐𝜶𝝈𝟐
𝟐
              

𝒒𝒈=var(𝒘𝒘)                𝒒𝒃𝒈= var(𝒘𝒅) = √𝟐𝜷𝝈𝟐
𝟐
 

Global Positioning System (GPS) 

It is a collection of 24 satellites divided into 6 

different orbits around the earth and 4 satellites in 

each orbit. GPS is designed to be visible to at least 

four satellites in the sky anywhere on the planet at 

any given time. 

 
Figure 4-1- Components of the Global Positioning 

System[25] 

Each satellite sends signals at a specific frequency 

concerning its position in the sky and the time when 

this information was sent. The GPS receiver, set in 

the transmitted signal bandwidth, can detect the time 

delay of the signal sent by satellite. Subsequently, it 

transfers this time delay to its distance from the 

satellite since the signal moves at the speed of light. 

In fact, a multi-channel receiver can receive a multi-

satellite transmission signal simultaneously and 

calculate the signal latency of each satellite. Ideally, 

with an on-board processor, a receiver can calculate 

its position on the device using information received 

from three satellites. On the other hand, because the 

clock pulse on the board is almost always different 

from the GPS clock timing, there will always be a 

time bias to consider. Therefore, the measured 

distance between the receiver and the satellite is 

called pseudo-distance, and at least four satellites 

are needed to identify the position [16]. 

It is worth noting that all the raw GPS positioning 

information will be earth-centered, earth-fixed 

(ECEF) three-dimensional cartesian devices. 

Now, if the position of the ith satellite is equal to (xi, 

yi, zi) in relation to the ECEF device, and also the 

position of the receiver in this device is equal to (x, 

y, z) and Δ is the bias of the receiver clock signal, 

and c is the speed of light and distance capture is ρi 

relative to this satellite, then these variables are 

related as follows:  

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + (𝑧 − 𝑧𝑖)
2 = (𝜌𝑖 − 𝑐∆)2 

𝑖 = 1.2.3.4 

The above equation can be summarized as follows: 

𝜌𝑖 = 𝑟𝑖 + 𝑏 

𝒃 = 𝒄∆ 

𝒓𝒊 = √(𝒙 − 𝒙𝒊)
𝟐 + (𝒚 − 𝒚𝒊)

𝟐 + (𝒛 − 𝒛𝒊)
𝟐 

B is the bias of the clock signal normalized by the 

speed of light and ri is the actual distance of the 

receiver from the satellite. 
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Integrated Structures of INS and GPS  

As stated, the advantages of each system can be used 

to cover the flaw of the other and increase the 

accuracy of the navigation by combining the output 

data of INS and GPS navigation systems.  

As a result, even in the worst navigation conditions, 

the Integrated navigation system will be more 

accurate than the inertial navigation system.   

Therefore, the integrated navigation system has a 

limited error during the navigation time, along with 

reducing the amount of error caused by the modeling 

of the gravitational acceleration and the calculations 

made in the navigation computer. Also, this system 

has the characteristic of inertial navigation systems, 

like real-time and continuous output with high-

speed data acquisition. 

The available structures to combine the inertial 

navigation system with GPS includes four general 

categories: 

• Uncoupled system (simple combining) 

• Loosely coupled (cascade) 

• Tightly coupled 

• Ultra-tightly coupled (deeply integrated) 

In uncoupled systems, each system does its 

navigation calculations separately, and a simple 

integrations algorithm works on their output. In 

other words, the position is set by the GPS and is 

considered as the input for the inertial navigation 

system. This method is the easiest, cheapest, and 

fastest way to combine the said systems and requires 

a navigation computer with low memory. No 

feedback data exists in this method, 

Furthermore, each system's malfunction does not 

affect the other one. This method has the lowest 

optimization accuracy compared to other coupling 

methods.  

 

 

Figure 5-1- Uncoupled system structure 

In the coupling structure, each system also does its 

calculations separately. However, there is feedback 

information in each of them from the results of the 

integration algorithm. This information is used to 

track the satellite's signal by the GPS receiver and 

correct the natural error of each system. The system 

is divided into two loosely or tightly coupled, based 

on whether or not the output of the Kalman filter is 

given to the GPS receiver as feedback.  

In the loosely coupled method, the measurings of the 

GPS receiver are processed separately and then 

entered the Kalman filter with the Inertial navigation 

data. Kalman filter estimates the inertial navigation 

system's error level by processing the measurements 

of both systems. Then, it calculates the difference 

between these values from the output of inertial 

navigation and replaces the new values as the output 

of the inertial navigation. 

In other words, the Kalman filter calculates the 

inertial navigation system error values. 

 

Figure 5-2- loosely coupled integration structure 

The inertial navigation system is used as a reference 

path in the tightly coupled method. Therefore, the 

distance between the receiver and satellite is 

calculated based on the output of the inertial 

navigation system, and the difference of these values 

is used as the measures of the integration filter. 

The ultra-tightly coupled method is a developing 

method. This method’s principles are almost like the 

tightly coupled method. It is claimed that this 

method is more accurate than the previous methods. 

However, it has heavy loads of calculations [5-9] 

and [17-19]. 

 
Figure 5-3- Tightly coupled integration structure 
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Nine parameters are needed to describe the inertial 

navigation system's behavior, including three 

position parameters, three velocity parameters, and 

three attitude parameters. In other words, it is 

necessary to have nine parameters to simulate the 

error system of inertial navigation in the loosely 

coupled method. However, in addition to these 

parameters, the describing equations of the receiver 

clock bias and accelerometer and gyroscope biases 

are also needed in the tightly coupled method. 

Therefore, the tightly coupled equation system 

includes more parameters, increasing the calculation 

complexity while having slightly better accuracy 

than the loosely coupled method. The difference 

between the tightly and loosely coupled methods is 

in the output data of the GPS receiver. The output 

data of the GPS receiver in the tightly coupled 

method includes pseudo-distance and its change 

rate. Also, the error of the GPS attitude is estimated 

by a Kalman filter. Nevertheless, in the loosely 

coupled system, the output data of the GPS receiver 

include position or speed, which are obtained from 

raw information (pseudo-distances)[28-30]. 

GPS measurement modeling (Posteriori 

estimation) 

The raw measurements of the GPS receiver are in 

two forms: pseudo-distance and pseudo-velocity 

(pseudo-distance rate). As described in the GPS 

receiver model, pseudo-distance refers to the GPS 

receiver's measurement of the distance between the 

GPS satellite and the receiver, which is subject to 

error due to various factors. Pseudo-distance refers 

to measuring the relative velocity of the receiver and 

GPS satellite along the vision of the receiver from 

the GPS satellite, which is done by the Doppler 

method. This measurement is also affected by error 

factors.  

In updating the posterior estimation (corrected) of 

the Kalman filter, which is done using the 

measurements of the GPS receiver, the difference 

between the measurements of the GPS receiver and 

the prediction of the estimate system from pseudo-

distance and pseudo-velocity are entered into the 

coupling system as the measurement of the Kalman 

filter [5-9 and 16 and 24].  

The prediction of the pseudo-distance 𝜌𝑒𝑠𝑡
𝑗

 and 

pseudo-velocity 𝜌𝑒𝑠𝑡
𝑗

estimation system for each 

satellite are as follows: 

𝜌𝑒𝑠𝑡
𝑗

= |𝑟𝐺𝑃𝑆
𝑗

− 𝑟| 

�̇�𝑒𝑠𝑡
𝑗

= (𝑣𝐺𝑃𝑆
𝑗

− 𝑣) ×
(𝑟𝐺𝑃𝑆

𝑗
− 𝑟)

|𝑟𝐺𝑃𝑆
𝑗

− 𝑟|
 

In the above equation, 𝑟𝐺𝑃𝑆
𝑗

and 𝑣𝐺𝑃𝑆
𝑗

 are the position 

and speed of the satellite j that the receiver is able to 

receive its signal. 
r and v are also position and velocity estimates based 

on inertial navigation output data. Thus, the 

difference between GPS measurement and 

estimation, which is the same as observation vector, 

will be as follows: 

𝑍𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡
𝑗

= [
𝜌𝑗

�̇�𝑗
] − [

𝜌𝑒𝑠𝑡
𝑗

�̇�𝑒𝑠𝑡
𝑗

] 

𝒁𝒋 = 𝑯𝒋𝑿 = [
𝑼𝒊

𝒋

𝟎𝟏∗𝟑

𝟎𝟏∗𝟑

𝑼𝒊
𝒋

𝟎𝟏∗𝟑

𝟎𝟏∗𝟑

𝟎𝟏∗𝟑

𝟎𝟏∗𝟑

𝟎𝟏∗𝟑

𝟎𝟏∗𝟑
] [

𝒓
𝒗
𝜺
𝜹𝒃
𝜹𝒅

] 

Where 𝑈𝑖
𝑗
 is the normalized vector in the earth-

centered, earth-fixed with unit length received from 

the j-th satellite by the GPS receiver and is obtained 

from the following equation: 

𝑈𝑖
𝑗
=

(𝑟𝐺𝑃𝑆
𝑗

− 𝑟)

|𝑟𝐺𝑃𝑆
𝑗

− 𝑟|
 

Estimating and correcting navigation error 

using Kalman filter 

The equations used in the Kalman filter are of two 

categories: the prediction of the state over time and 

the state of correction equations based on 

measurement. Thus, the state prediction equations 

must be calculated in each navigation calculation 

step to obtain the previous state estimate. Therefore, 

first, the equations of the continuous state space 

must be transformed into a discrete form: [20-23] 

∅𝑘 = (𝐼15∗15 + 𝐹∆𝑡) 

𝑥𝑘+1 = ∅𝑘𝑥𝑘 + 𝑤𝑑𝑘 

Where, 𝑤𝑑𝑘 is the discrete process noise, which is 

obtained in terms of continuous time process noise 

as follows: 

𝑤𝑑[𝑘] = 𝑁(0.𝑄𝑑[𝑘]) 

𝑄𝑘 = 𝐺(𝑡𝑘)𝑄(𝑡𝑘)𝐺𝑇(𝑡𝑘)∆𝑡 

The following equations show the previous state 

estimation and its covariance error with respect to 

the posterior state estimation and its covariance in 

the previous step [25-27]: 
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𝑥𝑘+1
− = ∅𝑘+1�̂�𝑘

+ 

𝑝𝑘+1
− = ∅𝑘+1𝑝𝑘

+∅𝑇
𝑘+1 + 𝑄𝑘 

It should be noted that since the sampling rate in 

GPS (10 Hz) is much lower than inertial navigation 

(100 Hz), the prediction and estimation of the 

previous state are calculated based on the values of 

the previous step predictions until the observation is 

updated by GPS information to receive new 

information.  

With each measurement of the information received 

from the satellites, the following matrix H is formed, 

and the observation matrix will be obtained based on 

it: 

𝐻 = [𝐻𝑗 𝐻𝑗+1… 𝐻𝑘]𝑇 

𝑍 = [𝑍𝑗 𝑍𝑗+1… 𝑍𝑘]𝑇 

 

Now, by calculating kalman gain and updating the 

state estimation, the latter state estimation is 

obtained: 

𝑥𝑘+1
+ = 𝑥𝑘+1

− + 𝐾𝑘+1(𝑍𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡 − 𝐻𝑥𝑘+1
− ) 

 

𝑃𝑘+1
+ = (𝐼 − 𝐾𝑘+1𝐻)𝑃𝑘+1

−  

 

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝑇(𝐻𝑃𝑘+1

− 𝐻𝑇 + 𝑅)−1 

Where, R is the GPS measurement noise matrix and 

can be calculated from the GPS catalog using GPS 

measurement error sources. 

𝑅 = [
𝜎𝑟𝐺𝑃𝑆

2 03∗3

03∗3 𝜎𝑣𝐺𝑃𝑆
2 ] 

simulation results 

The following values were considered for the 

simulations according to the relationships and 

explanations of Section 3 and Section 5:  

The following values are obtained for the Markov 

noise parameters of accelerometers and gyroscopes: 

√𝒒𝒂 = 𝟑𝟎𝟎𝒆 − 𝟔 
𝒈

√𝑯𝒛
⁄  

√𝒒𝒈 = 𝟐𝟐𝟎 
(
𝒅𝒆𝒈

𝒉
⁄ )

√𝑯𝒛
⁄  

𝝈𝒃𝒂 = 𝟎. 𝟎𝟎𝟕𝟕 (𝒎
𝒔𝟐⁄ ) 

𝝉𝒃𝒂 = 𝟐𝟕𝟎 𝒔 

𝝈𝒃𝒈 = 𝟏𝟗𝟐 (
𝒅𝒆𝒈

𝒉
⁄ ) 

√𝒒𝒃𝒂 = 𝟔.𝟔𝟐𝒆 − 𝟒 

Table 8-1: The initial condition of gps measurements for simulation 

GPS standard 

deviation in length 

channel: 

𝝈𝒉 

GPS standard 

deviation in width 

channel 

𝝈∅ 

GPS standard 

deviation in height 

channel 

𝝈𝝀 

GPS standard 

deviation for 𝐕𝐍 

GPS standard 

deviation for 

 𝐕𝑬 

GPS standard 

deviation for 

𝐕𝐃 

𝟒𝟎𝒎 𝟑. 𝟏𝟒 × 𝟏𝟎−𝟒𝒓𝒂𝒅 𝟑. 𝟏𝟒 × 𝟏𝟎−𝟒𝒓𝒂𝒅 𝟗. 𝟏𝟔 × 𝟏𝟎−𝟒 𝒎 𝟗. 𝟏𝟔 × 𝟏𝟎−𝟒 𝒎 𝟏𝟐. 𝟔𝟒 𝒎 

 

the position estimation in integrated navigation: 

 
Figure 8-1: The latitude estimates 

 
Figure 8-2:  the longitude estimates 

 

√𝒒𝒃𝒂

= 𝟔. 𝟔𝟐𝒆 − 𝟒 

 

√𝒒𝒃𝒂 = 𝟎.𝟎𝟎𝟒 
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Figure 8-3:  the height estimates 

the velocity estimation in integrated navigation: 

 

Figure 8-4: velocity estimate - north 

 

Figure 8-5: velocity estimate - east 

 
Figure 8-6: velocity estimate - south 

the attitude estimation in integrated navigation: 

 

Figure 8-7:  the roll estimates 

 

Figure 8-8:  the pitch estimates 
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Figure 8-9:  the yaw estimates 

the accelerometer estimation in integrated 

navigation: 

 
Figure 8-10:  the accelerometer estimation along the x 

axis: 

 
Figure 8-11:  the accelerometer estimation along the y 

axis: 

 
Figure 8-12:  the accelerometer estimation along the z 

axis: 

the gyroscope drift estimates in integrated 

navigation: 

 
Figure 8-13:   the gyroscope drift estimates along the  

axis 

 
Figure 8-14:   the gyroscope drift estimates along the y 

axis 
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Figure 8-15:   the gyroscope drift estimates along the z 

axis 

Validation of position estimates: 

 
Figure 8-16:  Innovation Signal Histogram Latitude 

Estimation Error 

 
Figure 8-17: Innovation Signal Histogram longitude 

Estimation Error 

 

 
Figure 8-18: Innovation Signal Histogram Height 

Estimation Error 

 
Figure 8-19: Innovation Signal Histogram velocity 

Estimation Error - north 

 
Figure 8-20: Innovation Signal Histogram velocity 

Estimation Error  -east 

 
Figure 8-21: Innovation Signal Histogram velocity 

Estimation Error - south 



58/ 
 

 

 
Amir Moghtadaei Rad Journal of  Aerospace Science and Technology 

Vol. 15/ No. 2/ Summer – Fall 2022 

 

 

Simulation Results Summary: 

Table 8-21: simulation results summary 

Results Analysis 

 

As it is clear from the first row of the above table, 

all 9 state estimations were well estimated, including 

the position, velocity, and attitude of the flying 

object, along with the biases of the accelerometers 

and the drifts of the gyroscopes. However, the main 

advantage of this article in estimating the above 15 

states is the outage of the GPS signal for a short or 

long period. Such a procedure in most integrated 

estimation algorithms will lead to divergence of the 

estimations or less accurate results. The main reason 

is that the GPS information is considered the 

reference signals of the estimation observations in 

the integrated estimation. Therefore, if they are not 

available, we will not have a correct estimation. 

However, in this article, even though the GPS signal 

was not available at times, the estimation of the 

states did not deteriorate and had higher accuracy 

than the first estimation (rows 1), which can be seen 

in rows 2 and 3 of the above table. This result was 

obtained with the help of the estimation algorithm 

proposed in this article. 

 

 

 

 

 

 This paper attempted to reduce the inertial 

navigation error, which increases over time and 

improves the navigation accuracy by using a 

fully integrated inertial navigation system and 

GPS model. As can be concluded from the 

simulation results in Section 8, the position, 

velocity, and attitude of the flying object have 

been estimated with good accuracy in 3 

scenarios. First, the Gps and INS were 

integrated without a GPS outage signal. In the 

second scenario, the GPS signal was outage for 

4 seconds, while the integration method helped 

improve the estimation accuracy. At last, in the 

third scenario, the outage of the GPS signal was 

prolonged. However, good accuracy was also 

obtained in this scenario.  

Despite the GPS outage signal, all of these 

improvements were achieved due to the tightly 

coupled integration suggested in this paper. 

 These estimates were validated by displaying 

the innovation signal of the estimation error. 

Since a good estimate has an Innovation signal 

with white noise characteristics, the histogram 
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of this signal for speed and position showed that 

the estimation is acceptable. 
Also, the bias estimation of accelerometers and drift 

of gyroscopes were done with acceptable accuracy 

but not as accurate as the estimation of the first 9 

parameters since these six parameters were 

unobservable. Of course, the validation of these 

estimates was done by another method, plotting the 

error variance diagram. Therefore, it was observed 

that the variance of the estimation error tends to the 

error covariance matrix, and their difference tends to 

zero, which indicates a good estimate of these 6 

parameters. 

Finally, the RMS estimation error and self-

estimation of 15 navigation parameters are 

summarized in tables 8-2. 

Of course, it is important to note that the error model 

was not considered for GPS, and its five errors were 

omitted. Also, other errors involved in the deviation 

of accelerometers and gyroscopes, such as scale 

errors, were omitted. If these errors were considered, 

this model would be a 27-state model. Nevertheless, 

they were omitted due to the prevention of 

computational complications and their smallness 

compared to other errors. 
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