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In present research, the interaction between single liquid droplet 

with particles inside a porous media is investigated numerically in 

two dimensions. The He’s model is used to simulate two phase flow 

and multiple relaxation time collision operator is implemented to 

increase numerical stability. Simulations have performed in three 

non-dimensional body forces of 0.000108, 0.000144, 0.000180, 

porosity values of 0.75, 0.8, 0.85 and Ohnesorge range of 0.19-0.76. 

In the range of investigated non-dimensional parameters, two 

distinct physics of droplet trapping and break up have observed. 

The related results revels that for every values of investigated non-

dimensional body forces and porosity, there is a critical Ohnesorge 

number that droplet breaks up occurs for larger values.  This 

critical value decreases as non-dimensional body force and 

porosity increases. Based on these results, a droplet trapping or 

break up behavioral diagram is drown with respect to the 

investigated density ratio, Ohnsorge, Reynolds and Capilary 

numbers. 

 

Introduction 

The study of flow in porous media has always been 

of interest to researchers. In nature and technology, 

we see many phenomena that are somehow related 

to porous media. Water filtration in rocks, fluid flow 

among underground rocks and underground aquifers 

are specific examples of this physics. In oil 

engineering, the rocks of an oil field can be 

considered as a porous media. In this field of 

research, understanding the behavior of fluids in 
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natural reservoirs, knowing the amount of oil or oil 

derivatives are among the technical parameters that 

should be considered in the design of an extraction 

system. Therefore, the study of the two-phase fluids 

flow of oil in reservoirs has been the subject of 

extensive researches [1-2]. 

Among the more modern applications related to 

porous media, we can mention the investigation of 

two-phase flow in the electrodes of fuel cells [3]. In 

biotechnology, trees and plants can draw and 

https://jast.ias.ir/article_147934.html
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transfer water through the hollow structures inside 

their stems and leaves due to high capillarity. In 

addition, many biological membranes can be 

considered as porous media, which is an explanation 

and a reason for the development of theories related 

to porous media in the field of biotechnology [4-5]. 
As can be seen, the interaction of two-phase flow 

with porous media is widely used in various 

industries and nature. Therefore, in this field, 

fundamental studies of the phenomena and the 

physics are needed. Thus, the subject of the present 

research is the detailed investigation of the 

interaction of droplets with the internal structure of 

the porous medium and the identification of related 

phenomena. 

In classical theories of simulating porous media, the 

effects of porous substance on fluid flow and 

transfer phenomena are considered through source 

terms. In this way, the governing equations of the 

fluid dynamics inside the porous medium are 

modified by the source terms. This type of macro-

scale analysis is based on volume averaging of the 

effects of the porous medium. 

The Darcy relation, which was presented by Henry 

Darcy in the 19th century, is based on the 

macroscale approach. This relationship states that in 

the steady state, the mass flow rate of the fluid inside 

the porous medium is proportional to the ratio of the 

pressure difference and the dynamic viscosity of the 

fluid. The proportionality constant of this 

relationship is the most important quantity in the 

porous medium, which is called permeability. The 

permeability of a porous medium largely depends on 

the size, distribution and shape of pore structures. 

Darcy's law is only valid for Newtonian fluids at 

very low Reynolds numbers. As the fluid flow rate 

increases, the deviation from Darcy's law increases. 

This subject was first reported by Forchheimer, 

1901. Experimental observations and mathematical 

models show that this deviation is dependent on the 

effects of inertia, turbulence and other factors that 

can be attributed to the high flow speed. 

Hubert pointed out in 1956 that the deviation from 

Darcy's law occurs at a Reynolds number close to 1 

(based on the size of the grains that make up the 

porous medium), while the turbulence phenomenon 

does not become important until Reynolds number 

of about 600 (Aziz and Settari, 1979). A 

modification of the Darcy equation for flow at high 

Reynolds is applied by the second-order Forchmeier 

term. 

In order to calculate the permeability, relationships 

have been developed that provide the possibility of 

estimating this quantity based on the geometric 

properties of the porous medium. An example of 

these equations is the Kozeny-Carman equation, 

which relates permeability to the porosity, the shape 

factor, and a quantity called Tortuosity [1]. 

In the case of multiphase flows in porous media, the 

Darcy relation can be developed by the concept of 

relative permeability, which is an attempt to include 

the effects of the presence of other fluids (in the 

form of a new phase). In this case, the wettability 

conditions of the porous medium and the 

dimensionless parameters related to the presence of 

the second phase are of great importance. The 

complexities of the subject caused that many 

fundamental works have been done (mainly 

experimentally) on the effect of different parameters 

on permeability or relative permeability inside 

porous media. 

Pan et al. used the Lattice Boltzmann method with 

various collision operators to study the flow inside 

two porous media consisting of a regular 

arrangement of solid squared section particles and a 

random arrangement of circular solid particles [6]. It 

should be noted that their studies are single-phase. 

In general, the production of a porous medium 

through the random arrangement of particles is a 

common method and is observed in many articles. 

For instant, Aaltosalmi in 2005, used this 

configuration to study the permeability of pebbles 

made of sandstone [7]. Rostamzadeh et al. 

investigated the permeability coefficient of a two-

dimensional porous media in high Knudsen numbers 

(slip flow regime) [8-9].  

In the two-phase mode, Gunstensen et al. 

numerically investigated the two-phase flow inside 

a porous medium in three-dimensions. Their study 

was focused on high and low viscosity coefficients 

and porous media with a high percentage of 

saturation by the main phase. They presented their 

results in the form of various diagrams to classify 

the behavior of two-phase flow in porous media 

[10]. 

Ferreol et al. investigated single and two phase flows 

through a porous bed consisting of sandstone in 

three dimensions. They studied the sensitivity of 

calculated permeability on different parameters 

including, the sample size and model parameters 

[11]. Martys et al. numerically investigated a multi-

material flow in a three-dimensional porous bed 

consisting of sandstone using LBM and Shan and 

Chen model. In their research, the replacement of 

one phase with another phase is well modeled and 

the relative permeability for different wetted phases 

https://en.wikipedia.org/wiki/Knudsen_number
https://en.wikipedia.org/wiki/Knudsen_number


  

 

 /63 

 

 Droplet Breakdown Analysis inside Porous Media at Different 

Porosities, Using LBM 

 

Journal of  Aerospace Science and Technology 

Vol. 15/ No. 2/ Summer - Fall 2022 

has been calculated. The results of their simulations 

are in good agreement with the experimental data 

[12]. Tölke et al. investigated a multiphase flow in a 

porous medium with variable viscosity and density 

ratio based on the model proposed by Gunstensen. 

In their research, the limitations and problems of the 

Lattice Boltzmann method were investigated in real 

problems [13]. 

Lin et al. investigated a real porous medium 

produced by X-ray Microtomography using LBM 

and the He model [14]. They used this model to 

simulate the purification process of two-phase fluid 

through a porous bed. Different surface tensions and 

low density ratios were investigated in this study 

[15]. 

Frank, and Perré studied the impact of a droplet on 

the surface of a porous medium at different porosity 

and contact angles. They results showed a power law 

behavior with respect to time for the radius of the 

wetted area inside the porous medium, whose 

constants depend on the porosity coefficient of the 

medium [16]. 

Using Shan and Chen's single-component model 

[17], Huang et al. studied the dependence of 

relative permeability on various parameters such 

as contact angle and viscosity ratio in a random 

arrangement of two-dimensional squares 

obstacles [18]. Shan and Chen's two-component 

model was used before by Pan et al. to obtain the 

capillary pressure saturation curve and compare it 

with experimental data [19]. Hao, and Cheng also 

used the free energy method to calculate the relative 

permeability of a bunch of spheres [20]. Tabe et al. 

investigated the two-dimensional flow of condensed 

water and steam mixture in a fuel cell polymer 

electrolyte membrane using the Lattice Boltzmann 

method [21]. Huang et al. also studied the two-phase 

fluid flow inside porous medium using the Lattice 

Boltzmann method and the color gradient model 

with multiple relaxation times collision operator 

[22]. 

Huan et al. compared three free energy models, Shan 

& Chen and Rothman-Keller, in terms of accuracy 

and numerical stability for simulating two-phase 

flow inside a porous medium [23]. Their study 

showed that Rothman-Keller and free energy 

models have better accuracy at high viscosities. 

Additionally, in terms of accuracy and stability, 

these two models perform much better than Shan & 

Chen model. Liu et al. also used LBM along with 

the Lee model to study the two-phase flow inside 

porous medium [24]. Latifiyan et al. investigated the 

evaporation of droplets in contact with a porous 

medium and studied different dimensionless 

numbers related to multiphase flow, heat transfer 

and porous geometry. They investigated the 

temperature, flow and mass transfer profiles [25]. 

Taghilu and Rahimian analyzed the penetration 

process of very large droplet into a porous medium 

consisting of a random arrangement of particles in 

two dimensions, using LBM and Shan & Chen two-

phase model. They investigated the effects of 

surface wettability and Darcy number on drop 

penetration [26]. In a similar study, SalehAbadi et 

al. analyzed the penetration of liquid film and 

droplet inside the porous medium using Shan & 

Chen model. They simulated viscous fingering and 

capillary fingering permeation regimes for a porous 

medium consisting of hydrophilic and hydrophobic 

particles [27]. Note, in the above mentioned 

researches, there is a significant difference between 

the length scales of the droplets and the particles of 

the porous medium. This is the most important 

difference between the above works and the current 

research, in which the length scale of the droplet and 

the particles of the porous medium is the same. 
Rastegar Rajeouni and Rahmati studied the effect of 

the electric field on the droplet behavior in the 

porous medium in two dimensions, using LBM. 

They used He–Chen–Zhang phase field model to 

analyze the two-phase flow. It should be noted that 

in their research, the porous medium was not 

analyzed at the pore scale [28]. 

It is clear that, in none of the above mentioned 

studies, the behavior of a single droplet of the same 

scale as the porous medium pores has not been 

studied. in some of these researches, the droplet 

radius is much larger than the size of the particles. 

This large difference in the scale of droplets and 

particles of the porous medium causes the particles 

to penetrate the droplets instead of breaking them. 

Therefore, in the current research, the length scales 

of the droplets and the porous medium particles are 

considered to be at the same order, which results in 

more diversity in the behavior of the droplets 

breaking in the porous medium. In other words, the 

same scale of droplets and obstacles in the porous 

medium caused the occurrence of various 

phenomena that are reported in the present research. 

In addition, in present research, an attempt has been 

made to define dimensionless numbers with 

indicators that can be measured on a macroscopic 

scale. This helps to produce meaningful non-

dimensional parameters from the point of view of 

https://www.researchgate.net/publication/319589167_He-Chen-Zhang_multiphase_Lattice_Boltzmann_model
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engineering (for example, the velocity scale is 

considered equal to the average speed in the porous 

medium). This also helps to generalizing the results. 

Based on our results, different diagrams have been 

extracted that can be very useful for predicting 
droplet dynamic behavior in porous media. 

Problem Statement 

In the present research, the two-phase flow inside a 

porous medium is investigated at pore scale. The 

geometry of problem is depicted in Fig. (1). As 

shown in this figure, due to the repetitive structure 

of the studied geometry, only one representative 

volume is analyzed in order to reduce the 

computational costs. In fact, by repeating this 

geometry, the entire porous medium is 

reconstructed. Therefore, as shown in Fig. (1), the 

boundary conditions of the problem are entirely 

periodic. 

The flow regime is determined according to the flow 

Reynolds number. The fluid is under the influence 

of a specific body force, which is the main driver of 

its movement along the horizontal axis. The range of 

studied Reynolds numbers is from 2 to 16. 

Therefore, the studied flow is not within the Darcy 

regime. 

The kinematic viscosity of both phases is assumed 

to be equal, but the densities are different. The 

kinematic viscosity of the main phase is 0.166666. 

Two density ratios of 1:2 and 1:3 have been 

investigated, and in both cases, the density of the 

main phase is 1. Thus, the density of the droplet 

changes. 

The dimensionless numbers investigated in this 

research are Reynolds, Capillary and Ohnesorge, 

whose definitions are given in relations (1) to (3), 

respectively. In total, 60 simulations have been 

performed in the form of two density ratios, three 

dimensionless body forces and 10 Ohnesorge 

numbers. 

 

(1) 
 

In Eq. (1), U represents the average velocity of the 

fluid, D is the flow inlet width, ρ is the density, and 

μ is the dynamic viscosity. 

 

(2) 
 

Where, σ represents the surface tension. Capillary 

number represents the effect of the main phase on 

the secondary phase (droplet). 

 

(3) 
 

Ohnesorge number expresses the cohesion of the 

droplet. The porosity coefficient is also defined as 

the ratio of the volume (in two-dimensions the 

surface) fV containing the fluid to the total volume 

(surface) totalV . 

 

(4) 
 

 

Governing equations and boundary 

conditions 

The equations of LBM distribution functions of 

incompressible isothermal two-phase flow are 

represented at equations of (5) and (6): 

 

Figure 1: Schematic of problem geometry and boundary 

conditions. 
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In which the first distribution function, g is used to 

calculate the flow quantities and f is used to trace the 

interface of two phases. The equilibrium distribution 

functions are also calculated as follows: 
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10 ,fd =   

(11) ,p gd=   

(12) .RTu gd  =   

The thermodynamic properties such as density and 

viscosity are calculated using equation (13). 

(13) ( ) ( ).l
l h l

h l

 
    

 

−
= + −

−
 

The above equations have been discretized and 

analyzed on the standard volume specified in Figure 

(1). As shown in this figure, the periodic boundary 

condition is used on all four sides of the 

computational domain. The effect of solid 

boundaries has also been included in the 

calculations using the half-way bounce back 

method, which represents the no-slip boundary 

condition. 

Discretization of Equations 

The particle distribution function in D2Q9 model is 

discretized as follows [14]. 

(14) 

0, 0,
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In which, c is equal to one. Based on the above 

discretization, the equilibrium distribution functions 

of flow and phase interface equations are written as 

follows: 

(15) 
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In which, the weight coefficients   a  are defined 

as follows: 

(16) 
0     1:4 5 9  :4 / 9, 1/ 9, 1/ 36  = = =  

To keep the method explicit, intermediate 

variables f 
 and g

 are defined as follows: 
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where δt is the time step and Γ_α (u) is defined as 

follows: 

 

(18) 
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The new variables 𝑓a̅nd �̅� satisfy the transfer 

relations (19). 

(19) 
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Macroscopic quantities can also be calculated using 

the following relations: 
 

(20) 
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One of the most important issues in the numerical 

solution of two-phase flows is the correct 

distribution of density across the interface. In nature, 

the thickness of the interface between two fluids is 

zero, but in all the interface capturing numerical 

methods, several computational nodes are involved 

in the interface. In many studies of two-phase flows 

conducted by the Lattice Boltzmann method, the 

examination of the thickness of the interface is 

considered as a criterion for the grid independency 

study [29-31]. In this regard, the density distribution 

across the two-phase interface for three grid 

resolutions is shown in Figure (2). By looking at the 

diagrams, it is clear that the grid independent 

solution is obtained at the 141x141 lattice nodes. 
 



66/ 
 

 

 
M.R.Salimi, M. Taeibi Rahni, A.Amiri Hazaveh, M.Zakyani Rodsari  Journal of  Aerospace Science and Technology 

Vol. 15/ No. 2/ Summer – Fall 2022 

 

 
Figure 2: Density distribution in the droplet center line 

along the Y axis  

 

Code Validation 

In order to validate the results, two problems of 

Laplace's law and two-phase Poiseuille flow have 

been studied. In Laplace's law problem, a single 

drop that is not affected by any external force is 

simulated. After the drop is balanced, the pressure 

difference between inside and outside of it for 

different values of surface tension should change 

according to Eq. (21). Figure (3) compares the 

results of the current numerical model for two values 

of surface tension and three different drop radii with 

Eq. (21). As shown in this figure, there is a very 

good agreement between the results. 

(21) 
2

Out InP P
r


− =

 

 
Figure 3: Laplace validation result 

The two-phase Poiseuille flow problem is the 

second problem analyzed to validate the results. In 

this problem, the fluid inside a channel with 50% 

saturation has been investigated according to Figure 

(4). The speed profile obtained from the simulations 

is compared with the analytical relations presented 

in equation (22) in figure (5). 

(22) 
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The quantity that is important in this problem is the 

saturation volume (
wS ). This quantity is defined as 

the ratio between the volume occupied by the 

wetting phase ( w ) and the total volume of the 

channel according to Eq. (23). Figure (5) compares 

the results of the simulations carried out in this 

research with the analytical solution presented in Eq. 

(22). 

(23) w
w

w nw

V
S

V V
=

+

 

 

Figure 4: Geometry of two-phase Poiseuille  flow 

problem. 

 

Figure 5: Two-phase Poiseuille flow validation results. 

Results and discussion 

In this section, the results related to the dynamics of 

single droplet of the same size as solid particles 

inside the porous medium are presented. In the range 

of dimensionless numbers studied in this research, 

two phenomena may occur when the droplet collide 

with the particles of the porous medium. It either 

may stops behind the obstacles or broken by the 

obstacles. Figures 6-7 show how the droplet breaks 
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up or stops for different conditions presented in 

Table 1. Figure 6 is related to the condition (a) that 

leads to the droplet confinement and Figure 7 is 

related to the condition (b) that leads to the drop 

breaking. According to more details in the drop 

breaking process, the number of snapshots presented 

in Figure 7 is more than Figure 6. As shown in 

Figure 6, the fluid flow pushes the drop to the central 

particle. Since the flow does not have enough energy 

to overcome the surface tension force in this case, it 

cannot breaks up the droplet. 

By increasing the capillary number in the second 

case (Figure 7), the speed of fluid flow increases. 

The increase in kinetic energy of the flow leads to 

compression, spreading and finally breakup of the 

droplet it into three parts. As indicated in this figure, 

one part is trapped behind the central particle and the 

other two parts flow around it. Due to the periodic 

boundary condition in the streamwise direction, two 

separated drops alternately exit from one side of the 

computational domain and enter from the opposite 

side. 

Table 1: Flow conditions related to Figs. 6 and 7. 

Density 

Ratio 
Ohn Ca None. Dim. 

Press. Ratio 
 

1/3 0.3138 0.0561 41.08 10−  a 
1/2 0.4438 0.2374 41.44 10−  b 

  

  

  
Figure 6: Droplet trapping behind the central particle 

for case a from Table 1 

In Figures. 8 to 13 changes of flow Reynolds 

number as a function of Ohnesorge number for 

different dimensionless body forces are shown. 

Factors affecting the Reynolds number in the porous 

medium are: geometry of the porous medium, 

pressure gradient and droplet dynamics. In order to 

check the above, simulations performed for three 

values of dimensionless body force, two different 

density ratios of 1:2 and 1:3, and three different 

porosity values. The most important results obtained 

from these simulations are presented as follows. 

  

  

  

  

  
Figure 7: Droplet breakup for case b from Table 1 

https://en.wikipedia.org/wiki/Capillary_number
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According to these figures, there is a critical 

Ohnesorge value that the Reynolds number of the 

flow suddenly increases after passing through it. In 

other words, for Ohnesorge lower than this critical 

value, less flow passes through the porous medium 

and as a result, the Reynolds number of the flow is 

lower. However, with the increase of Ohnesorge 

number from this value, it is as if a barrier is 

removed from the flow path and as a result more 

flow passes through the porous medium. From the 

physical point of view, the critical Ohnesorge 

number is related to the breakup of the droplet. Thus, 

for smaller values of Ohnesorge number, the drop 

maintains its integrity and acts like a barrier against 

the flow. As the Ohnesorge number increases, the 

drop gradually loses its integrity. Therefore, it first 

expands on the central particle and then it is broken 

and washed away by the fluid flow. This process is 

associated with an increase in the flow rate of the 

fluid passing through the porous medium and as a 

result the Reynolds number of the flow. 

As indicated in Figure 13-8, with the increase of the 

dimensionless body force, we always see an increase 

in the mass flow rate and as a result the Reynolds 

number. The reason for this issue is also clear due to 

the increase in fluid driving force. In addition, it can 

be seen that with the increase of the dimensionless 

body force, the critical Ohnesorge number decreases 

in all cases. This issue is also expected considering 

the effect of body force on the increase of fluid 

kinetic energy. As the kinetic energy of the flow 

increases, the shear force transferred from the fluid 

to the droplet increases, which causes the droplet to 

break up earlier. 

Based on Figures 13-8, it can be seen that the 

porosity coefficient has the same effects as the 

dimensionless body force. As the porosity 

coefficient increases, the Reynolds number 

increases, but the critical Ohnesorge number 

decreases. Because by increasing the porosity 

coefficient, there is more space for the fluid to pass 

and as a result, the blocking effects of the porous 

medium are reduced. By reducing the resistance of 

the porous medium to the flow of the fluid, the flow 

rate and as a result the Reynolds number increases. 

As the Reynolds number of the flow increases, the 

kinetic energy of the flow also increases, which 

causes the droplet to break up faster at lower 

Ohnsurge numbers. 

Variations in capillary number with respect to 

Ohnsurge number for different density ratios and 

dimensionless body forces are shown in Figures 14-

16 for different porosity coefficients. The diagrams 

in Figure 14 correspond to the porosity coefficient 

of 0.75, the diagrams in Figure 15 correspond to the 

porosity coefficient of 0.8, and the diagrams in 

Figure 16 correspond to the porosity coefficient of 

0.85. Abbreviations BU and T in these figures refer 

to the drop breaking and trapping, respectively. 

 
Figure 8: Ohnesorge -Reynolds diagram for 

density ratio 1:2 and porosity coefficient 0.75. 

 
Figure 9: Ohnesorge -Reynolds diagram for 

density ratio 1:3 and porosity coefficient 0.75. 

 
Figure 10: Ohnesorge -Reynolds diagram for 

density ratio 1:2 and porosity coefficient 0.8. 

 
Figure 11: Ohnesorge -Reynolds diagram for 

density ratio 1:3 and porosity coefficient 0.8. 

 
Figure 12: Ohnesorge -Reynolds diagram for 

density ratio 1:2 and porosity coefficient 0.85. 
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Figure 13: Ohnesorge -Reynolds diagram for 

density ratio 1:3 and porosity coefficient 0.85. 

The droplet dynamics are shown in Figures 14-16 

for two density ratios of 1:2 and 1:3 and three 

dimensionless body forces of 41.08 10− , 41.44 10−  and 
41.80 10−  (with abbreviations P1, P2 and P3). 

The red part of the graphs in these figures is related 

to the conditions of droplet confinement, and the 

black part is related to the droplet breakage.  

As in graphs of all three figures 14 to 16, the breakup 

of drops in the range of dimensionless numbers 

investigated in this article occurs around the 

Capillary number of 0.1. Therefore, this number can 

be considered as a critical value for the breakup of 

drops in the range of dimensionless numbers 

investigated in this research. Also, it can be seen that 

with the increase of the density ratio, the critical 

Ohnesorge number in which the droplet breakup 

occurs increases. Since the square root of the droplet 

density enters in the denominator of the Ohnesorge 

number, it is natural that with the increase of the 

density ratio, the droplet breakup occurs at higher 

Ohnesorge numbers. 

Another point that is noticeable in the graphs of 

figures 14 to 16 is the effect of the porosity 

coefficient in increasing the slope of the variation of 

the capillary number whit respect to the Ohnesorge 

number. The reason for the increase in the slope is 

that with the increase in the porosity coefficient, the 

mean velocity of the two-phase flow increases. As 

the flow rate increases, the capillary number is also 

increases.  

 
Figure 14: Ohnesorge-capillary diagram for 

density ratio 1:2 and 1:3 and porosity 0.75. 

 
Figure 15: Ohnesorge-capillary diagram for 

density ratio 1:2 and 1:3 and porosity 0.8. 
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Figure 16: Ohnesorge-capillary diagram for 

density ratio 1:2 and 1:3 and porosity 0.85. 

In addition, it can be seen that with increasing 

porosity, the relative fraction of droplet breakup 

modes to droplet confinement mode (red areas in the 

curves) increases. Of course, this issue was expected 

due to the effect of greater porosity on the easy flow 

of fluid inside the porous medium and the increase 

in flow energy in breaking the droplets. 

Conclusion 

In this article, the dynamics of a droplet of the same 

size as the particles forming a porous medium was 

investigated. In order to identify the breakup 

behavior of the drop inside the porous medium, 

various dimensionless numbers such as Capillary, 

Ohnesorge, porosity and dimensionless body force 

were investigated. In the range of dimensionless 

numbers studied, two physics of breakup and 

trapped drop were observed. It was shown that there 

is a critical Ohnesorge number, which the drop 

breaks for values greater than that. Also, it was 

observed that this critical value decreases with the 

increase of dimensionless body force and porosity 

coefficient. The results show that with the breaking 

of the droplet, the fluid mass flow rate and 

consequently the flow Reynolds number increases.  

In addition, Reynolds-Ohnesorge and Capillary-

Ohnesorge diagrams were presented in order to 

predict the droplet behavior at different porosity 

coefficients. In these diagrams, the ranges related to 

the trapping and breaking of droplets were 

determined, which can provide useful information 

regarding the studied two-phase flow 

phenomenology. 
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