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This paper studies an output feedback second-order sliding mode control problem of
spacecraft attitude control in the presence of the inertia tensor uncertainty and external
disturbance. Mathematical modeling is presented based on spacecraft nonlinear equations
of motion and quaternion parameters. Firstly, a new sliding surface based on only attitude
error is selected, then the standard second-order sliding mode control approach is
followed. Finally, controller stability and tracking problem are guaranteed by choosing
suitable auxiliary control input. The stability is proven by using concepts of a strong
Lyapunov function and Lyapunov stability theory. Numerical simulations of attitude control
of spacecraft equipped with 6 PWPF thrusters are given to demonstrate the performance

of the proposed controller.

Keywords: attitude control-second order sliding mode-finite time convergence-attitude

tracking

Introduction

Advanced space missions demand the development
of effective spacecraft attitude control systems
(ACS) to ensure rapid and accurate time-response to
various input commands. Such a response should be
achieved globally in the presence of uncertainties,
internal and external disturbances, and sensor or
actuator nonlinearities. A significant challenge
arises when all the mentioned issues are accrued
simultaneously [1]. Spacecraft attitude motion is
governed by kinematic and dynamic equation.
These mathematical descriptions are coupled and
nonlinear. Thus, linear feedback control approaches
are not suitable enough for the global controller
design [2]. Standard First-order sliding-mode
control (SMC) scheme has been considered as a
useful technic for spacecraft-attitude control [3].
The main motivation behind SMC is the inherent
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robustness and simple design. Vadali [4] designed a
variable-structure attitude control law based on
quaternion kinematics representation. Since then, a
considerable amount of researchers have
investigated the  application of standard
conventional sliding mode control (SMC) for the
attitude control of spacecraft [5,6-10]. However,
chattering is a serious limitation in the standard
sliding mode scheme, which can lead to hardware
failure. In the simplest case, chattering can be
alleviated by using mainly the boundary layer
approach [11]. However, in this approach, the
sliding mode is ensured within a boundary layer, but
the behavior inside the boundary layer is not defined
and therefore, robustness and accuracy cannot be
ensured in full strength and performance
deterioration is inevitable [1,12]. Higher-order
sliding mode (HOSM) is also a flexible, robust and
adaptive control approach, which alleviates
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chattering phenomena [13]. Additionally, HOSM
control ensures that the sliding variables and their
high order derivatives reach the zero (origin) in
finite time [14]. Second-order sliding mode control
is a specific case of HOSM control, which used to
control various types of nonlinear systems [12,15].
In SMC design, the sliding surface is a linear or
nonlinear combination of system states. In the case
of spacecraft, body angular rate and quaternion
parameters are the system’s states. Thus previous
researchers chose 0= wr + kqr as sliding surface,
which has proportional and derivative terms.
Obviously, selection of sliding surface with this
structure results the relative degree one. Designer
can solve the control problem both with (i) integral
second-order sliding mode (ISSM) and (ii)
derivative approach. Here, to design a second-order
sliding mode control with global finite-time
convergence, we choose sliding surface as o= kq; .
This sliding surface leads to deferent stability
approve which is the main difference between this
paper and others. This paper proceeds as follows: In
Section 11, the attitude kinematics and dynamics are
presented and external disturbance is defined. In
Section III, the second-order SMC formulation is
discussed. In Section IV, the closed-loop stability is
proven using the Lyapunov stability theory. Then,
simulation results are shown in Section V. In the
end, the paper conclusion is given in Section VL.

Spacecraft Modeling

A rigid body spacecraft attitude kinematics and
dynamics, and also external disturbance are given in
this section.

Kinematic Model

Quaternion parameters, due to their non-singularity
computation, is the widely used parameter to
represent the attitude kinematics of rigid spacecraft
[16]. The kinematics equations using the quaternion
parameters are given as:

1
Gy = 5 (@alsxs + 7))
) (1
I T
Qs = — Eqvw
where qv» = [q1, @2, q3]T€R3 and qqdeeR are the
vector and scalar part of the unite quaternion,
respectively. [3x3 is the identity matrix, and
T
0 = [y 0y, 0,] R g body angular rate. For any
vector such as m = [my, mp, m3]Te R* , notation m”
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denotes skew-symmetric matrix, which defines as
follows:
0 -msz m,
m* = [ ms 0 —ml] 2)
-m, my 0
To define the attitude kinematics and dynamics
equation for tracking control problem, the relative

attitude error between body frame and a desired
reference frame is required to be established. The

error-quaternion q1g=[q£vq154]Te‘R3 xR which

presents error between current and desired attitude
is defined as follows:
ey = Gaady ~ davqy ~ 9aav 3)
Qes = qgv‘?v £3 49y

where qr=[qr1,qr2,qe3]T€R’ and qeseR are the
vector and scalar part of the error-quaternion
parameters. Finally, error-quaternion parameters
can be updated by Eq. (4).

i |
Gy = E(QE‘4I3><3 + qpu)wg
(€3}

Qgs = — 7 AEv W
where wg is the error body angular rate between
current and desired body angular velocity. In this
paper we considered a rest to rest maneuver, so
desired body angular velocity is zero.

Dynamic Model

The attitude dynamics of a rigid spacecraft is
defined using Euler’s equation and expressed as
follows: .

@ =] (~w¥w +u®) +d(®) (%)

where  u(t)=[ui,u2,uz]TeR’ is control input,
d(t)=[d,d2,d;]TeR® is the external disturbances
acting on the spacecraft body, and
J=diag(JxxJyy.J 2)€R>™ represents the spacecraft
moment of inertia tensor.

Assumption 1. We assumed that quaternion
parameters q (measured by sun-sensor and
magnitometers) and body angular rate (measured by
3 dimensional gyroscopes) are available for
feedback.

Assumption 2. The external disturbance d(t) is
bounded, and the bound limit is known.

Actuator Modeling

Here, we assumed that spacecraft is equipped by 6
symmetric cold gas thrusters as shown in figure 1.
Among the known pulse modulators, the pulse-
width pulse-frequency (PWPF) modulators are the
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most common and enjoy advantages over bang-bang
control systems. PWPF modulators and on-off
actuators are widely used in spacecraft control [17].
As thrusters work on on/off switching, there is a
conversion from continuous desired torque control
command to an on/off signal for spacecraft thrusters.

X3

Fig. 1: six symmetric cold-gas thrusters of spacecraft

A simple model of a spacecraft equipped with
PWPF thrusters is shown in Figure 2.

y y q 8
Spacecr vuﬂ b
Dynamics s

PWPF modulator is usually preferred because its
operation mechanism has an almost linear
input/output  relationship. Also, the PWPF
modulator operates in a quasi-linear mode by
modulating the width of the output pulses and the
distance between them simultaneously. And it can
produce pulses in two directions: positive and
negative pulses. A PWPF modulator mainly
comprises two components: a first-order lag filter
and a Schmitt trigger inside a feedback loop, as
shown in Figure 3. A Schmitt trigger is an on-off
relay with a dead zone and hysteresis. Four
parameters should be tuned properly. These
parameters are: pre-filter gain (K,) and time
constant (T) as well as activation (Kw) and
deactivation (Kn) values of Schmitt trigger.

Schmidt trigger To thruster

Demanded r
Torque 1 H—

r(t), K, [x() »(8),

—@—)
T T : i UottUon
1=1

Fig. 3: Structure of PWPF modulator

Actuator specifications used in the simulation are
listed in Table 1.
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Table 1. PWPF Parameters

Km Tm UDR U\'Jff
4.5 0.1 0.2 0.1

We assumed that the saturation limit of thrusters is
0.1 Nm, and the thrust force distance to the center of
gravity is | m.

External Disturbance

To simulate the spacecraft operating environment
we need to consider space disturbances. The gravity
gradient is the spatial rate of change in gravitational
acceleration. Which is produced because of the
Nonhomogeneous mass distribution of the satellite.
It’s the most effective disturbance torque in 600 to
800 km. The general Equation of gravitational
torque is defined as follows:
M=[#x d,dm ;whered, = *GME% (6)

Where 7 and R are shown in figure 4, and Mg is
math of earth.

Fig. 4: Principle of Gravity Gradient Torque Scheme
Finally gravity-gradient disturbance torque
calculates as [16]:

GG, = 23% (I, - L) sin(2¢) cos?(6)
GG, = 3—#3(12 — 1) sin(26) cos(¢) (7)
215

3
GG, = —#3 (Ix — Iy) sin(28) sin(¢)
275

where p is the standard gravitational parameter of
earth, ¢ and 8 are the Euler angles, and we suppose
that the moving satellite is at a distance Or from the
center of mass of the earth. Quaternion parameters
can transfer to the Euler angles as follows:
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2(q293 + 91q4) )
—q; —q5+q5+q;

8 = —sin"*(2(q19s — 9244)) (8)

i = mn_l( 2(g19: *+ q394) )
i —a; — a5 +aqi

¢:=tan‘1(

Controller Design

Obviously, selection of sliding surface with
conventional structure of o=wr +kqr results the
relative degree one [18]. Therefore, to design a
secondorder sliding mode control with global finite-
time convergence, we choose o=kqr as sliding
surface [19]. But the main difference between this
work and others is the auxiliary control input as will
explained below.

0 = (ep 9

where = [01, 02, 03]7 R .

Obviously, from Egs. (5) and (9), the first time
presence of the control input (u(t)) appears in the
second derivative of the sliding surface (9).
Therefore, selection of the sliding surface (9) causes
the relative degree r = 2.

Now, it is easy to verify that the second-derivative
of sliding surface yields.

o=
g T(qngg + w5 (Gealzxs + qEy)WE)

% (10)
+ ) (qgalaxs + iy W
Using Eq. (5), yields:
1
Ueq = 51 (@hs 0 + WEG(Q)wE)GT(Q) (12)

+ 0w
And total control input is as follows:
Utor = Ueq + Vdisc (13)
where v(t)eR’ is the auxiliary control input.
Vaise = —H-Sign(s + 3) (14)

Now, this controller guarantees the stability and
finite time convergence.
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Stability Proof

In this section, for the closed-loop system, stability
proof has been discussed. The proof is discussed
here based on the lyapunov theorem [20] in two
steps; in the first step, it is shown that if the attitude
states locate in the reign 2 and 4 of figure 5, then
they will achieve to origin in finite-time without
using the lyapunov. Secondly, it is shown that if the
attitude states locate in the reign 2 and 4, the error in
attitude states will go to the zero in finite-time by
second-order sliding mode, based on the lyapunov
theorem.

s
Region 2 Region 1
§5<0,5>0]|s>0,5>0

s
Region 3 Region 4

§s<0,5<0]s>0,s<0

Fig. 5: ss — ss plane

Consider the lyapunov candidate as follows:

1 1
V(S,S‘)ZESZ+ES‘2 (15)

It is crystal clear that V(s,s) is positive definite.

Following equation shows the time-derivative of V.
V(s,§) =58+ 3§ _ (16)

Using Eqgs. (11) and (12), the new form of V" would

be as:

: 1
V(s,$) =s5+ EG(Q)]“ls'(—,u. sign(s + §)
+d())
Assumption 3. The upper bound of external

disturbance is di, so we can claim that |d(t)| < d: .
Now, Eq. (17) can be written as follows:

(17)

V(s $) =58 — §(uysign(s +8)) + 6 (18)

Where 1 =p1.6|Kd)5|, and K= G(Q)J "

Case 1. if s5°< 0, then we are in region 4 or 2 of the
figure 5. It is obvious that in these regions s=qg, will
reaches to the origin, because these conditions
represent a stable differential equation. Case 2. if
55> 0, then we are in region 1 or 3 of the figure 5. In
these cases we need to use lyapunov theorem, and
the task is to prove that V is negative definite (V' <n,
whih n>0).
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If (s+$) > 0 then Eq. (18) turns to following:
V(s,§) =ss—Su +8 < -7 (19)

In this case, choosing u?(@ +s) satisfies Eq. (19).
If (s +$) < 0 then Eq. (18) turns to following:

V(s,8) =s$+8pu, +6<—1 (20)

In this case, choosing u?(# +|s]) satisfies Eq.
(20).

In both (19) and (20), Choosing u>(2> +s])
guarantees the asymptotic stability of closed-loop
system. Indeed, auxiliary control input plays
significant role in the stability of proposed
controller.

The disadvantage of proposed controller is the need
for knowing about upper bound of disturbance
torque (d;) and the error of attitude (gev) and body
angular rate (wg).

By selecting this control signal (equation 13), the
states rotate around the s—s plane to reach the origin
as shown in figure 6.

altg) <0

olt) >0

Fig. 6: schematic of s—5 plane

Simulation

Simulation is conducted in the presence of external
disturbance and inertia uncertainty. Specifications
of the spacecraft and Orbit are given in Table 2.
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Table 2. Simulation Data

/13

Parameter | Data

Spacecraft Specification

Mission

Mmoments of inertia
matrix

Inertia uncertainty

Mass
Initial attitude

Initial angular body
rate
desired attitude

Earth Observation

46 0 0
= [ 0 44 0 ] [kg/m?]

0 0 42
4y
sin(0.1t) 0 0
= [ 0 sin(0.2t) 0 ]
0 0 sin(0.3t)
100 kg

[¢pg,B0,15] = [25,15,—5] deg
[Pa, 90, 70] = [0,0,2] rad/sec
g, B4, %4] =10,0,0] deg

Orbital Elements:

Type circular

Altitude 2000 km

Orbital frequency 8.2330e-04 rad/sec
Period 7.6317e+03 s
Inclination 85 deg

u of the Eq. (14) has been chosen as 0.7 for
simulation. The attitude time response history is
depicted in figure 7.
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Fig. 7: Time history of attitude response
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Figure 8 shows the PWPF thrusters output.
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Fig. 8: Time history of thrusters output

The phase-plane of states are shown in figure 9.
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Fig. 9: phase plane

3D trajectory of Euler angles are depicted in figure
10.
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Fig. 10: Euler angles 3D trajectory

The chattering of attitude response (figure 7) is a
result of PWPF mechanism and actuators’ saturation
limit. Figure 11 shows the attitude response in the
absence of the actuator dynamics.
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Fig. 11: Euler angles 3D trajectory

It’s clear from above figure that chattering has been
removed in second sliding mode controller.

Conclusion

To conclude, the second-order sliding mode attitude
tracking control problem for a rigid spacecraft
equipped with PWPF thrusters and subject to gravity
gradient disturbance is investigated in this paper.
Firstly, a sliding surface based on attitude error has
been chosen (without the first time derivatives of
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attitude errors). Then, the stability and robustness
have been guaranteed with the use of suitable
auxiliary control. Using the Lyapunov stability
theory, we have proved that the error dynamics
converge to near zero (origin) in finite time. This
filter is suitable for use with any controller that
requires knowledge of velocity and angular velocity
errors. Moreover, QC3S reduces the undesirable
chattering effect induced in the conventional SMC
and provides very good accuracy of the tracking
results. Numerical simulations on attitude control of
a sample spacecraft model are also presented to
demonstrate the performance of the proposed
controller.
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