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This paper presents a new Modified Predictive Kalman Filter (MPKF). To solve the
problem of a strap-down inertial navigation system (SINS) self-alignment process that the
standard Kalman filters cannot give the optimal solution when the system model and stochastic
information are unknown accurately. The proposed algorithm is applied to SINS in the initial
alignment process with a large misalignment heading angle. The filter is based on the idea of
an accurate predictive filter that applies n-steps ahead of prediction of the SINS model errors
to effectively enhance the corrections of the current information residual error on the system.
Firstly, the formulations of a novel predictive filter and a fine alignment algorithm for SINS are
presented. Secondly, the vehicle results demonstrate the superior performance of the proposed
method, in which the MPKF algorithm is less sensitive to uncertainty. It performs a faster and
more accurate estimation of SINS' initial orientation angles compared to the conventional EKF
method.
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Nomenclature ) The vector of angular velocity of navigation frame

relative to inertial frame.

(nfb The vector of gyroscopes output.

6()  The symbol of perturbation error. oy, The vector of gyroscopes drift.
? The symbol of The partial derivative. ), The vector of the earth rate in navigation frame.
) »  The vector of angular velocity of navigation frame
v’ The vector of velocity in navigation frame. O relative to inertial frame
VpaVyaVy 3;‘(3)5;5@ North, and Down components of g"  The gravity vector represented in navigation frame.

@ The latitude angle.
r The earth radius.
0.4,y The Euler pitch, roll and yaw angles.

e &€ The East, North, and Down components of
E2TN>TD - misalignment angle (pitch).

€” Vector of attitude misalignment angles in navigation frame.
C,  The transformation matrix fom the body to navigation frame

f”  The vector of accelerometers output.
Sf"  The vector of accelerometers biases.

f"  The vector of specific force in navigation frame.
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Aoy, The East, North, and Down components of
Aw,,Aw, 8yroscope drifts.

Afy,Af,  The North and East accelerometer biases.

y The measurement vector.

X The state vector.

H The measurement matrix.

v The measurement noise.

Xﬁﬁ The state vectors with dimension 10 for EKF filter.

EKF
Fl 0x10

d

The state matrix representation for EKF.

The model emor (gyroscopes and acoelerometers residual
biases)

d; The optimal model error predicted by MPKF algorithm.

The vector of the predicted model error within the
p-1 prediction horizon.
The optimal vector of the predicted model error

k.p

D, o o .
©» within the p-1 prediction horizon.
X1, The state vector of future predictions up to a horizon
p-
J.,, The performance function in step % +1.
F The extended state matrix of future predictions up to a

x horizon p

Q

p  The extended sensitivity model error matrix

Introduction

The initial alignment of a strap-down inertial
navigation system (SINS) affects the navigation
performance of the SINS directly. However, an
accurate alignment must be required before the
start of navigation. Otherwise, it will directly
degrade the navigation accuracy [1]. Additionally,
alignment accuracy and alignment time are two
primary criteria that affect the self-alignment
performance. Usually, the working environment of
SINS is noisy, the initial misalignment angles are
expected to be large, and the noise isn't Gaussian
white noise (the noise characteristics of gyroscope
and accelerometer). Moreover, the influences on
the heading estimation will be incorrect because of
its incomplete observation. In this case, the
traditional Kalman filter estimation makes
inaccurate results and sometimes leads to filter
divergence. Consequently, estimating a large
heading angle is a challenge for the recent
research.

To achieve the above deficiencies, many
researchers and scholars are dedicating themselves
to further researching and realizing different
methods to solve the self-alignment problem.
Research is mainly divided into two regards; the
research on a nonlinear model and the research on
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nonlinear filtering [12-16]. Remarkable research
on a nonlinear model can be summarized as
follows; a modified error model of SINS for the
initial alignment process was performed under
marine mooring conditions [1], while an algorithm
to automatically estimate large misalignment
angles was suggested in [2] and a fast alignment
method was proposed based on the attitude matrix
decomposition [3]. Some studies researched the
alignment of SINS aided by global positioning
systems (GPS) [4] or aided by gimbaled INS [5],
to provide better conditions for the SINS error
observability. Nevertheless, most of the methods
stated previously suffer from the estimation
accuracy of the heading misalignment and the big
alignment time or the alignment problem is not
achieved without other sensors.

In the literature, to reduce the computational
complexity for the self-alignment process, a
method based on the attitude determination
technique was presented in [6, 7]. Several
nonlinear filtering methods were applied to the
initial alignment process, amongst the commonly-
used methods there is the extended Kalman filter
(EKF), unscented Kalman filter (UKF) [8],
particle filter (PF), fading cubature Kalman filter
[9], and cubature Kalman filter (CKF) [10]. An
incremental predictive filter (IPF) was applied to
the alignment of SINS [11]. However, the IPF
filter assumes that the reference heading angle is
available, and the system is time-invariant. A
remarkable initial alignment method for a stable
platform is stated in [17]. Most of the previous
methods require a large amount of computation,
the heading accuracy is generally only within a
few degrees, and the covariance can diverge with
respect to the SINS uncompensated modeling
error.

Model predictive filtering (MPF) [18], is a real-
time filter method to estimate the model error of
the system. It has developed rapidly [19-21].
Unlike the Kalman filter, a predictive filter
assumes a colored noise [22]. The applications of
the MPF have been reported in various fields such
as navigation and attitude determination [23, 24].
The conventional predictive filter, due to the use
of Lie derivatives in its formulation [25], has a
very complex mathematical algorithm. Despite of
the advantages of the conventional predictive
filter, its complexity makes so much trouble in
understanding the algorithm and makes the design
of the predictive filter a very time-consuming and
inflexible process [16]. In fact, with minimal
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changes in the dimensions of the model error
vector or the model-error distributer matrix during
the design process, the filter designer must
recalculate all Lie derivatives. This drawback
limits the widespread utilization of MPF seriously
and leads to not using its advantages by engineers.
Because of the high-level noise from the MEMS inertial
sensors, MIMU self-alignment is generally considered
impossible, and other sensors are often necessary to
provide initial heading information. In recent years,
many studies have begun to focus on using a MEMS
north seeking. One of these papers [26] proposed to use
a MEMS gyro and accelerometer to achieve a one-
degree northing accuracy. The high-precision tuning
fork MEMS gyroscope can achieve a north-seeking
accuracy of four milli-radians in 5 min [27]. To achieve
such a high north-seeking accuracy using MEMS gyros
is very attractive. However, current north seeking
experiments have been conducted on a static base,
which limits the range of MEMS-IMU application, and
can be improved by fusing gyro and accelerometer data
with complementary filters [28]. However, without
other aiding sensors, this algorithm cannot provide the
heading information. The self-alignment of MEMS-
IMU is generally considered impossible, and other
sensors are often necessary to provide the initial
heading information. In addition, the traditional
gyro-compassing algorithm is no longer applicable
for MEMS-IMU on stationary bases [12]. This
study proposes to estimate the model error of the
MEMS IMU (gyroscopes and accelerometers
biases) to suppress the bias effect on the heading
error, and then the use of online iterative filtering
to achieve the self-alignment of the MEMS-IMU.

This paper introduces a modified predictive
Kalman filter MPKF for SINS accurate self-
alignment process (Fig.1). The goal is to reduce
the effect of initial alignment errors and to increase
the robust performance of the alignment process
against model uncertainty and the outer
disturbances. The MPKF is an approach based on
optimization of a cost function to predict the SINS
model error, which uses predicted n-step ahead of
model error with unknown time-varying noise
statistics to compensate for model errors [29].
Figure 1 shows the block diagram of the proposed
algorithm. The performance of the proposed
method is validated with a vehicle test, under the
condition that the base is disturbed. The results
demonstrate that MPKF performs a faster
convergence and a more accurate estimation of the
heading angle compared with the conventional
EKF method.
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This paper covers four main parts. Part II
introduces the fundamental knowledge about the
initial alignment techniques, and it presents the
new state-space variables for MPKF. Part III
describes the MPKF formulation and its specific
algorithm. The MPKF performance will be
compared with the EKF, and the results of a
vehicle test will be interpreted in Part VI. Finally,
Part V carries the conclusion of the research.
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Fig.1. the block diagram of the proposed algorithm.

SINS Self-Alignment

The main purpose of the self-alignment process of
SINS is to obtain the initial coordinate
transformation matrix between the vehicle frame
and the local navigation frame (North axis, East
axis, and Down axis, that is NED) without any
external aids. Traditionally, for the low-cost SINS,
due to the low signal-to-noise ratio of the
gyroscope, the angular rate of the earth's rotation
is mixed with gyro noise, and this method is no
longer applicable. Accordingly, the output of the
accelerometer calculates the initial horizontal
attitude angle directly, while the initial heading
angle is uncertain. In other words, the alignment
accuracy is significantly reduced when the
disturbance is strong with a large heading
misalignment angle.
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For the IMUs whose bias and noise levels are
smaller than the value of the Earth’s rotation rate,
such as navigation-grade and tactical grade IMUs
including the ADIS16488A (see Table 1 ), the
analytic coarse alignment method followed by the
fine alignment can be applied to estimate the
IMU?’s attitude information. The coarse alignment
can be calculated using the averaged data in the
stationary mode. So, the analytical coarse
alignment yields averaged attitude. Since the
instantaneous attitude of an IMU is continuously
changing by outer disturbances, the fine alignment
technique is needed. The fine alignment is to
estimate the attitude of an IMU with higher
accuracy in time. For automotive-grade, and
consumer-grade [IMUs, the external heading
measurements using magnetic compasses or
velocity matching alignment technique are usually
used.

Table 1 : Specifications for different grades of IMU

[29].
Performance CEP rate Gyros Accelerometers
(Km/h) (deg/h) (€3]
Strategic grade(<) 0.2 0.001 10-4
Navigation grade 2 0.01 10-3
Tactical grade(>) 20 0.1-10 10-2
Automotive 120 10-200 1.2
Consumer 180 >360 24

The gyroscope bias level of IMU ADIS16488A is
rated at 5°/h, which can cause a 11.6° initial
heading error. Hence, the estimation of gyroscope
biases plays a significant role for tactical-grade
IMUs. Figure 2 shows the value of the second term
on the right hand side of equation (13) for some
gyroscope bias values at latitude 35.789°. The
heading error would be about 11.6°, if the
gyroscope bias was 5°h. If the bias is not
estimated correctly in the fine alignment, the
heading error would still remain even after
filtering.

12 ADIG164868A

Gyro drift(°/h)

Fig.2. Coarse alignment error for ADIS16488A
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In this paper, the proposed Modified Predictive
Kalman Filter (MPKF) is designed to predict and
to compensate for the model error in each step.
Hence, the proposed algorithm performs closed-
loop filtering, which combines the coarse and the
fine alignment processes. At first, the analytical
coarse alignment process is used to calculate the
initial transformation matrix using two non-
collinear vectors; the acceleration vector of gravity
and the vector of the earth's rotation angular
velocity. Then, the fine alignment process is
adopted by linearization about the given alignment
angles (from the coarse alignment), and by using
the MPKF to predict and to compensate for model
error. Therefore, it is better enough for fine
alignment, since compensation for the
disturbances is also provided.

Attitude Error Equation

From [30-32], the SINS attitude error equation can
be obtained as follows:

Ow, ow,,
7 J— (Dn n + n 5 n + n 5rn
# =ofol < Je e oV ()

n b
-C,om;

The SINS is assumed fixed without any motion.
Therefore, ”, =0, then:

&' = —[0);; ><:|s" +00!, —Clo0) 2)
Where:
Ye w, cos P
r
o, = Iy 3)
r
tan .
5 -5 -5 !
S, [ vy 2O itaw] @
r r r

It is assumed that C;Sw), as gyro biases A vector
of navigation frame. The dynamics of these biases
are expressed, for the EKF algorithm, as random
constants A® =0, while, in the MPKF algorithm,
Ao defines the unknown gyroscope model error.
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Velcocity Error Equation

In the navigation frame, dynamics of the velocity
errors of SINS [30-32] are given by:

oV =—(20m, + o) )x V" +5g"

-Qol +! x5V —&" xf" +C,5f"

en

(5

Sf’ is the accelerometer error, and Sg” the gravity
error term. For static alignment, the vertical
velocity error can be negligible (dv,=0).
Therefore, the dynamics of the velocity errors can
be formulated as:

V' = =20 x V" —&" x{" +C} 5 (6)

Initial Alignment Error Model

The state equation of the initial alignment filtering
model can be retrieved from equation (2) and (6).
Hence:

&y =-0,8INQe, +0V, [r —Ao,

£, =+o,sinpe, +w,cospe, —OV, [r — Ao,
£,=-w,c08Qc, —Ov, tan@/r — Aw, (7)
vy = 2w,sin@ov, — gg, +Afy

OV, =+2m,sinPov,, + ge, + Af,,

Coarse Alignment

In the coarse-alignment process, two non-collinear
vectors are adopted, the local gravity vector, and
the earth rate vector.

g'=[0 0 gf ®)
o' =[w,cosp 0 -@,sing] ©)

The components of these vectors along with the
NED frame, g and w, are the magnitude of the local

gravity and the earth rate, respectively, and ¢ is the
local geodetic latitude. The following equation is
used to calculate the transformation matrix C’

-1

nl th
C = o o) (10)
[ xor] | [[rxal]

The resulted alignment matrix is as follows:
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—tan @ 1 0

g W COSQ £
C = o 0 -1 o)’ (11)
2We COSP !
1 £ o’ r
- 0 0 0,
g

The Euler angles are calculated from C] as:

0 =—tan™' (cn/,/l -c3)
g=atan2(c,,,cy;), (12)
w=atan2(c,,,c,,)-

This method is based on an idealization in which
there are no accelerometer and gyro errors (and no
deflection of the vertical vector). In fact, both
accelerometer and gyro output data have errors.
Also, even though the vehicle is stationary, it is not
rigidly fixed to the earth and motions due to
disturbances cause incorrect accelerometer and
gyro outputs. In general, the initial errors
eyv,€.,6,depend  on  the uncertainties in
measurements of accelerations and rates by the
inertial sensors and can be easily deduced to be
governed by the following equations:

M
=
g
1{ Ay A A
&, =—£—A+£tango—&se0(p) (13)
2\ ¢ g @,
1{ A A
&) =—(—ﬁtan(p+ O seC(p)
AN 4 @,

Mainly, the heading accuracy is affected by the
east gyro and accelerometer errors, if bias is not
estimated precisely in the fine alignment, the
heading error remains after filtering.

The Proposed Coarse Alignment

The traditional formula of the estimated heading
angley that is presented in equation (12) contains
the output of three gyroscopes. The proposed method
is similar to the traditional method, but it has the less
computational operation. It uses the horizontal body
frame compensated measurements of the

accelerometers f” and the gyros @”, . The three Euler
angles can be determined by the following equations:
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b
6 =sin"(¢,) = sin” (1)
g

AL G . —f)
¢ =sin™'(—25) =sin"'( L
cos

——)
g\1-sin’ @

A b . . A
cosy = Gy _ Oy —o,sin @sind
cosd ®, Cos @ cos &

. ) o R
-, —o,singsingcosd . - N
e =@, SN PSin +sin@ tan ¢ cos

siny = 2
@, COS P COS P

)

N _,, siny
¥ = tan™ (O
cosy/

Real Time Calculation

The horizontal accelerometers outputs are collected
and the average value is calculated according to the
following formula:

b _ b, ffb(")—fb(’l—l)
£ (n)=1£"(n 1)+—n

Where, i =N ,E n=2,3,---. The initial pitch angle
and the roll angle are calculated at the current time
as:

Fh
B oy =sin”!(

ry)
O(n) =sin"\( M)
g

Where, t"(n) is the average output value of the

previous n data, £’ (n—1) is the average output

value of the previous n-/ data, f’ (n) is the current

output value. The horizontal gyroscopes output are
collected and the average value is calculated
according to the following formula:

b —b
0, (n)-o,; (n—-1
By, (n) =@, (n—1)+ iy (D)~ By (=1

n
Where, ; — N £ n=23.-

Fine Alignment

The coarse alignment process can provide small
angles deviations between the indicated and the
ideal alignments. These deviations result from the
model errors and the systematic errors in the
sensors that cannot be estimated. Therefore, the
alignment accuracy is resolved to the gyro drift
and accelerometer bias. That is, the model errors
decrease alignment accuracy or even lead to
divergence of the filter. In this paper, to increase
the alignment accuracy, the fine alignment process
will be mixed to coarse alignment to improve the
estimated initial alignment matrix by applying the
proposed MPKF filter, which predicts the model
errors.
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Choice of State Space Variable

Frequently, in static alignment, the position and
the vertical velocity errors are ignored. Therefore,
the level velocity errors, misalignment angles, the
constant accelerometer biases, and the constant
gyro drifts are preferred as the state variables for
EKF filter. In this case, the state vector for the
system error model is specified by:

a
L _ ExnsErEpsOVy, 0V, ... )
P Aoy, Aoy, Ao, Afy, A,
Then,
%100 = FigaoXion (15)

The combined deterministic and stochastic model
error state vector in the navigation frame is
selected as the state space for MPKF. It takes the
following form:

- MPKF MPKF _ MPKF
X5, =F; sa tds, (16)
where:
MPKF T
X'l =gy &, &, vy Ov] (17

Wheree, ,&,,¢,are the misalignment errors for
the transformation between the b-frame and the
navigation frame. év, and 6v, are the north and
the east velocity errors. The vector d represents
the random part of the error model (gyroscopes

and accelerometers residual biases). The state
vector of the system error model is defined as:

d,, =[Aw, Ao, Ao, A A (18)

Measurment

The pseudo measurements v, =v, =0 can be used
as a direct measure of the errors §vy, v, , each
denoting the difference between the velocity
indicated by the system and the visible (Earth-
referenced) velocity of the system (ideally zero, if
the vehicle is stationary).The heading indicated by
the system can be extracted from the computed
C;:

w=atan2(c,,,c,,) (19)

Moreover, the fact that the heading error is not
completely observable is widely accepted. The
pseudo measurement of the heading angle is the
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difference between the heading indicated by the
SINS and the heading estimated by the filter. The
linear relationship between observations and states
is given by:

y=Hx+v (20)

Wherev O N(0,R), the matrix H for EKF is given
by:

00010

HA =10 0 0 0 1 0, (21)
001 00

The matrix H for MPKF is as follows:
00 010

HY™ =10 0 0 0 1 (22)
0 01 00

The covariance matrix of measurements is:

R = dlag |:er] erl O-jzinnn‘h :I At (23)
With ¢, and o, , representing the standard
deviations of the velocity and azimuth
observations.

Modified Predictive Kaman Filter (MPKF)

The Modified Predictive Kaman Filter (MPKF)
indicates an estimation methodology that
calculates optimal model errors based on a model
of a dynamical system and its predicted future
evolution. The idea of the MPKF strategy has
come from the duality between the concept of
incremental predictive control [16] and the
estimation theory. MPKF is designed as a real-
time optimization problem that repeatedly predicts
model errors by minimizing a quadratic cost
function.

The estimation part, shown in Fig.3, uses past data
to estimate the current state. Kalman filter
achieves exactly this for linear models subject to
process noise and measurement noise. The
prediction part in Fig.1 estimates a trajectory of the
model error such that a predicted output tracks a
reference objective as well as possible. Then, only
the first part of the predicted model error must be
implemented. Next, the method repeated at the
next sampling time by moving the horizon of
prediction. It is important to realize that this
repeated optimization procedure enables the
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MPKF to decrease the model uncertainties and
external disturbances.
The Past

Future Prediction

.............................

Measurments 5. OO OO0 |
@ H

F Forcast
@

SINS Sensors Quiput . Prediction Harizon

The first optimal (d) is implementes =
> MPKF Estimation

Optimized Model arror

k k+1
Fig.3. Modified predictive estimation principle.

The uncertainty of SINS model errors is defined as
the deviations of sensors deterministic errors from
the SINS calibration values; including bias, scale
factor, and misalignment angles of the inertial
Sensors.

State Space Model

The discrete form of the nonlinear state equation
(7) of the initial alignment model and the
observation equation can be formulated as:

X =f(X.d)+w,

Y, =A(X,)+v,

Defining, Q, and R, as a symmetric positive semi-
definite matrices that represent the covariance of
the normally distributed random noises
w,andv, .

(24)

Problem Statement

The MPKF predicts the future of the model error
performance. This section details how to calculate
these forecasts for model error. Considering the
linearized discrete-time state space of the system
mode, Equation (23), this gives the one step ahead
prediction as following:

’:‘kuk = Fk%k +d, (25)
Yo =HX
The Equation (24) at sample k + 2 can be formed
as:
Xeon =FXp o td (26)

Substitute (24) into (26) to eliminate x,
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f‘k+2'k - szﬁk +Fd, +d,,,,
yk+2,k = Hf‘k+2'k (27)
V.,,=HEX +HFd, +Hd

k+1/k

More generally by continuing this recursion to

give the p-step ahead predictions as:
X, ,,=F'X, +F'd, +--+d,
Akpk kkA kY k+p-1/k (28)

Yiipk = HF/X, +HFkP_ldk +"'+Hdk+p-1 k

Hence, the whole vector of future predictions up to
a horizon p is given by Equations (29, 30).

Xk+l,p =Fx, +GDDM (29)
Yk+1,p = HFxf(k +HGDDk_p (30)
Where,
ﬁkﬂxk Fk dk
X0k sz A
Xkﬂ.p = : ;Fx = . ;D,”, = :
;(ker k F];p dk+p—l'k
1 0 0 0 S
Yivk
F, I 0 0 §
G, = sz F, I 0¥, = o
: : : 0 .
| A I | Yenn

(1)

Consequently, the predictions of future states and
outputs over the prediction horizon are affine in
the current state and the future model error moves,
HF, is a reaction of the system output to state X, ,

and HG, is a reaction of the system output to
model error moves D, .

Basic Algorithm of MPKF

The MPKF manages the process model to predict
the future model error over a determined
prediction horizon p. At each time step, an
optimization problem is solved to calculate the
sequence of future model error moves. The first
one of optimal model error moves is applied to the
process model. At the next time step, the
prediction horizon of the optimization problem is
shifted forward in time, and the procedure is
repeated.
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Performance Criterion

The MPKF algorithm requires a cost function in its
formulation to calculate the optimal solution at
each sampling interval.

For the SINS self-alignment, the penalty function
penalizes the weighted norm of the current
innovation measurement states and the norm of the
model error.

d;; = r(;l,”n Jk-¢-1 (Xk+l’ p)
. (32)
Yk+l‘p + ﬂ’Dk.pDk,p)

+,p

d, =min(pY;,

This implies that the filter can predict a model
error that will drive the system towards the desired
object. In the quadratic form of equation (32), the
term pl and A1>0 are both diagonal and they

satisfy pI > 0, A1 > 0. With proper substitution, the

cost function in Equation (32) can be simplified,
respectively, as:

Jon (X, p) = YkT+1,ppIYk+1,p + D;p—l/HDk,p—l
=D, [G£H£+1PIH1<+1GD + /H:| Dy,

k,p-1
+2 I:(HkHFkﬁk ) pIHmlGi ] D,

+(H, FX,)" pI(H,  FX,)
(33)
The optimization problem can be solved by
minimization of the cost function using least-
squares formulation. Least squares allow
analytical solution for an unconstrained problem
and penalize larger errors more than smaller errors.
The solution of this cost function can be obtained
by computing the derivative of J,, (x,,,,p) and

equating it to zero:

e (X0, P) _

0, 34
oD 69

k.p
The solution is:
D, = —(p[pHTGgGDH +1] H'G/HF, )ﬁk
(33)
Defining the MPKF gain:
K, =—p[ pPH'GLG H + 21| H'GLHF, (36)
Then,

* A

D, P K, ke Xy (37)
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*

k.p-1
found, but only the first model error move is
applied to system, that is:

There is optimal model error sequence D

d, =1 0 01" K, X, (38)

After applying the first model error move of
optimal sequence to system, new output is
measured and new optimal model error sequence

D, is computed. The simplified MPKF

k+l.p
framework algorithm is as follows:

1-Initialization at step £ = 0. Supposing the initial
state variable and the covariance matrices are:

%, = E[x,1,d, =0

P, = E[(x, — %, )(X, ~ %,)"]
Q=E[(W)wW)']
R=E[(V)(V)']

2- The optimal model error is calculated as
following:

(39

*

d, =1 0 0K, . X, (40)
3- Time updating:
Computing the predicted state estimate:

X0 = FX, +G,d, (41)
Computing the predicted measurement

X0 = FX, TG, d, (42)
Computing a prior covariance matrix:

P...=FPF +Q, (43)
Computing the Kalman gain:

-1
K. = Pk+l'kH£+l I:HkﬂPkH'ngH + Rk+l:| (44

4- Measurement updating:

Correcting the predicted estimate on the
measurement:
ﬁkﬂ = ﬁkﬂrk +K,. [Yk+1 - ykﬂrk] (45)

Computing a posterior covariance matrix:

Pk+l = [I - Kk+lHk+l ] Pk (46)

+1/k

According to the above analysis, the SINS self-
alignment using MPKF algorithm is shown in
Fig.4. Here, to solve the problem of large initial
heading angle error, the closed-loop MPKF
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algorithm is proposed. The precise alignment may
be performed with a large azimuth angle error,
even 180°. With this technique, the self- alignment
does not need too much time (30 sec).
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Fig.4. Modified predictive estimation principle.

Vehicle Test and Results

In this section, for experimental evaluation
purpose, a real time vehicle test was performed.
The performance of the EKF and MPKF will be
compared and investigated.

The real-time test uses a tactical grade SINS, type
AIDS16488A (Fig.5). The SINS is mounted
rigidly related to the body of a stationary vehicle
of accurately known longitude, latitude, and
height. The raw measurements of SINS together
with the orientation, velocity, and position of
SINS, with respect to local level NED frame, are
provided at the same rate, 200 Hz. Online data
storing is executed through a serial RS-422 port on
an integrated on-board computer. ADIS16488A
has been used as measurement data. The main
statistical features of these inertial sensors are
given in Table 2.

Table.2. Specifications of inertial sensors.

Parameter Gyroscopes Accelerometers
Misalignment Axis ~ +0.05° +0.035°
Nonlinearity 0.01% 0.1%

Bias Repeatability +0.2°/s +16 mg

In-Run Bias 5.1°h 0.07 mg
Stability

Random Walk 0.26°\h 0.029 m/s/Nh
Output Noise 0.135°/s 1.29 mg rms
Noise Density 0.0059°/s/\Hz 0.063 mg/VHz
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Therefore ADIS16488A senses the earth rate but
not accurately (see Table.3). The proposed method

I —
will predict and compensate for gyros errors.

' Mavigation
Recording Data Computer
Computer

Metwrark

| ADISTB45E8

Cn Board
Computer

Fig.5. The hardware for test set up.

To judge the performance of the EKF and the
proposed MPKF, each filter was applied to the
same SINS raw data (Fig.6 and Fig.7). In this test,
the output of gyroscopes and accelerometers of
SINS were placed on a vehicle with the engine on

(to produce some outer disturbances).

—— Acc output —— mean

W

_ [ i
; 10
< "
IO L.l s e
0 10 20 30
|

Fig.7. The ADIS16488A gyroscopes output.

Table.3. The raw data from gyroscopes
Theoretical values The mean of gyro output
for attitude angle without compensating the
Phi=35.793° and roll and pitch angles and
Az=175° gyro drifts
Wx (°/h) -12.15198 -14.6668
Wy (°/h) 1.063 4.4452
Wz (°/h) 8.79776 10.2715

Three different kinds of initial attitude angles are

selected as follows: The levelling misalignment
3°, 7.8°, the large heading

angles are about 3
misalignment angle is about 174°. The EKF and

MPKF are used to solve the above initial

alignment problem, respectively. The test results
are illustrated in Figs.8-12. The figures show the

estimation error of Euler’s angles, north and east

velocity.
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2
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Fig.8. Estimated error of roll angle through GPKF and
EKF

----- EKF
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-3
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Fig.9. Estimated error of Pitch angle through GPKF
and EKF
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Fig.12. Estimated error of §v, through GPKF and
EKF

The estimation error of roll, pitch, and heading
angles using MPKF was very accurate with respect
to the estimation of EKF. The steady-state
estimation error of each of roll, pitch, and heading
angles are of the order of 0.11 arc. min, 0.017 arc.
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min and 0.059 arc. min, respectively. While the
steady-state estimation error of EKF for roll, pitch,
and heading angles are of the order of 0.51 arc.
min, 0.18 arc. min and 17.8 arc. min, respectively.
In order to explain the results of EKF and the
proposed MPKF filter under disturbance error
conditions more clearly, statistical results are
shown in Table 4. As a result, the alignment
accuracy using the MPKEF is significantly higher
than EKF.

Table.4. Comparison of the accuracy of estimated
errors between EKF and MPKF

MPKF EKF
Mean  Steady Mean  Steady

&y arcmin 409 0.11 113. -0.51 0.0006

Std

Error

&, arc.min 16.1 -0.017 443 -0.18 0.0006
&paremin - 493 -0.059 116 -17.8 0.0217
§VN (m/s) 27e-5 -44e-6  0.06 0.001 0.0002
5VE (m/s) 83e-5 -44e-5 0.5 0.008 0.0002

Next, analyze the convergence speed. In Figs.8-12,
the convergence speed of MPKF method is nearly
the same for all variables (less than Ssec), where
the convergence speeds of EKF is slower than
MPKF method (more than 25sec). The MPKF
filter could eliminate the effect of the inertial
sensors’ noise levels and model errors, the effect
of bias, correlated noise, and scale factor noise.
The MPKEF can bind their effects, and its transient
states are very smooth and are not far from the
steady-state (see Fig. 10). While the EKF filter
couldn’t eliminate the effect of the inertial sensors
noise other than the white noise.

The real test was prepared to approve the
performance of the proposed MPKF for SINS self-
alignment process with a large heading angle.

Fig. 13 presents that the estimated large heading
angle is accurate, and the estimated error is
decreased efficiently when using the MPKF filter.
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Fig.13. Estimated large heading angle by MPKF
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To evaluate and validate the outcomes and claims,
the time-history of covariance (Fig.14), Kalman
gains (Fig.15), and model errors (Fig.16), are

presented.
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Fig.16. The estimated model errors.
In this paper, the main purpose of the self-
alignment process of SINS is to obtain the initial
coordinate transformation matrix between the

N.A. Ghahramani , H. M. Alhssan

vehicle body frame and the local navigation frame
(NED) without any external aids.

Fig. 17 presents the results of the actual azimuth
angle from GPS data (reference angle is 174°)
when the vehicle starts moving.
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Fig.17. The starting position of static alignment and
the reference data (the actual azimuth angle is 174°)
when the vehicle starts moving.

The trajectory of the tested SINS is presented in
Fig. 18.
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Fig.18.The vehicle trajectory.

Conclusion

In this paper, a novel self-accurate initial
alignment filter named Modified Predictive
Kalman Filter (MPKF) is introduced to estimate
the initial alignment angles of a strap-down inertial
navigation system (SINS) with a large heading
angle, in the presence of model errors and outer
disturbances.

The MPKEF filter uses n-step ahead prediction of
the SINS model errors by optimizing a quadratic
cost function, to correct the current information
residual error on the SINS. This leads to an
accurate and fast SINS self-alignment process. The
MPKF formulation is presented with a detailed
closed-loop self-alignment algorithm, which
combines the coarse and the fine alignment
processes.

A real vehicle test is prepared to verify the
performance of the proposed MPKF for SINS self-



Design and Vehicle Test of a Modified Predictive Kalman Filter...

alignment process with a large heading angle. The
results demonstrate that the estimation errors of the
MPKF are remarkably less than the estimation
errors of the EKF because the MPKF can estimate
the inertial sensors model errors more accurately,
unlike the EKF.
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