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In this study, Adaptive Network-Based Fuzzy Inference System (ANFIS) is presented with a
sensor data fusion approach to estimate the satellite attitude. The active sensors are the sun
and earth sensors. Satellite attitude dynamics, including attitude quaternion and angular
velocities are estimated simultaneously utilizing the measured values by the sensors. The
Extended Kalman Filter (EKF) is employed to verify and evaluate the efficiency of the presented
method. Additionally, the neural networks with Radial Basis Function (RBF) and Multi-Layer
Perceptron (MLP) are also designed to prove the superiority of the proposed ANFIS network
among the smart methods of sensor data fusion for satellite attitude estimation. Root Mean
Square Error (RMSE) as a numerical criterion and graphical analysis of residues are utilized
to evaluate the simulation results. The simulations confirm that the obtained estimations from
ANFIS network have more accuracy in modeling of nonlinear complex systems compared to
EKF, MLP, and RBF networks. In general, using intelligent data fusion, especially ANFIS,
reduces attitude estimation error and time in comparison to the classical EKF method.

Keywords: Attitude estimation; Data fusion; ANFIS; Extended Kalman Filter; Neural
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All data raised from the sensor measurements are

Introduction

One of the important subsystems of a satellite is
Attitude Determination and Control Subsystem
(ADCS), which is utilized to keep the satellite in a
desirable attitude and position. ADCS employs
several types of sensors to determine the satellite
direction toward a particular reference, such as the
sun or stars. Therefore, different processing
methods and sensor data fusion approaches should
be considered in ADCS design [1, 2].

uncertain. The fusion process of information leads
to establishment of a database, which is broader,
stronger, and more accurate than any individual
databases created by each independent sensor.
Environmental complexities and uncertainties,
errors and limitations in the capability of the
sensors, prevent the creation of complete and
accurate  information by each  sensor,
independently.

The fusion of information is known as one of the
best methods to achieve useful information with
maximum reliability. Obtained information from
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different sensors is combined in data fusion
process to achieve more comprehensive results [3].
Features such as reduction of uncertainty and
increasing estimation speed and reliability, are the
other advantages of utilizing sensor data fusion.
For some reasons, such as noise sources, sensor
data cannot be utilized as an input for control
system directly. Therefore, it is necessary to
remove the noise from measurement data by
employing appropriate filters, before entering
them into the control system. On the other hand,
common filters are not suitable for employing in
precise applications due to time delay.

Kalman filter which is known as a sensor data
fusion method is a suitable option for utilizing in
satellites due to its ability in removing noise and
estimation of the system state variables
simultaneously.

Neural networks are also a part of model-free
intelligent systems that are able to model a highly
nonlinear and complex system by utilizing a
collection of neurons [4]. Because each neuron in
the network is affected by activities of the other
neurons, despite eliminating some of the grid cells
or in the case of malfunction of some neurons, it
will be possible to reach the correct answers. In
addition, based on the interpolation mechanism,
network can provide a suitable output when faced
with an un-experienced situation. The existence of
a parallel structure also increases the processing
speed in the form of hardware implementation. In
fact, these networks, by processing experimental
data, transfer the rules and knowledge which are
hidden behind the information to the network
structure. Therefore, they are able to learn the
general rules based on fulfillment of calculations
upon the primary data and examples. These
networks have shown very high performance for
estimation and approximation [5].

As mentioned before, due to important role of
ADCS in keeping the satellite in suitable position
and situation, multiple researches have been done
in this area. However, it is noteworthy to know that
despite the strategic importance of satellite control
in Geosynchronous Earth Orbit (GEO) and
economic nature of the issue, generally, in many of
the references, only the general topic and exerted
methods have been mentioned and the precise
executive details have been refused to be
presented.

An attitude estimator has been proposed based on
Kalman filter which considers attitude quaternion,
scale factor, gyro bias ratio, and star tracker bias as
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its state variables [6]. Of course, it is in a situation
that angular velocity of the satellite has not been
taken into account as a system state variable.
Hajiyev et al. proposed a combination of EKF and
Singular Value Decomposition (SVD) to estimate
the attitude angles, angular velocities, and gyro
biases of a small satellite. Robust Kalman filtering
by using both modified methods of EKF and
Unscented Kalman Filter (UKF) for attitude
estimation in Pico satellites considering evaluated
faults is proposed in [8 and 9]. Myung et al.
proposed a UKF that can estimate the state
variables of the satellite system, which includes
quaternion and angular velocities of the satellite,
and is able to estimate gyro sensor setting
variables. In this reference, it is supposed that
measurement includes quaternion vector, so the
satellite attitude measurement vector is assumed
linear which improves the estimation error and
makes the filter design easy [10]. Ejiang and
Chang employed a Kalman filter for data fusion of
sensors, which used the weighted combination of
error covariance matrix of each sensor for error
covariance matrix of the system [11]. Star sensor,
GPS, and gyro were intended to determine the
satellite attitude. A gain-scheduled EKF was also
proposed to decrease the computational load in
nano-satellite attitude determination process [12].
The Kalman gain was determined analytically with
the aid of sensor parameters, instead of computing
the online Kalman gain. Souza et al. investigated
the antenna pointing system for satellite tracking.
Kalman filter based conical scan technique was
employed for estimation [13]. Choi proposed a
new method utilizing GPS observations for real-
time navigation based on unscented filtering [14].
Effects of low frequency errors of star sensor with
a novel multiple-model of Kalman filter is
introduced in [15]. Kalman filter has also been
used in [16-18] to estimate the attitude parameters.
A Kalman filter has been presented in Ref. [19] to
utilize a seven-component angular-momentum
state vector including the parameters of angular
momentum in an inertial and body frame, and a
rotation angle to estimate the attitude of a spinning
spacecraft. The constraint that was applied to the
filter was the same magnitude of the angular
momentum vector in body and inertial frames,
which greatly facilitate the measurement of
sensitivity matrices.

A Locally Linear Neuro-Fuzzy model (LLNF)
with a locally linear model tree learning algorithm
was suggested to estimate the Euler angles of a
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Low Earth Orbit (LEO) satellite based on
observations of the sun and magnetic sensors [20].
Yue et al. discussed about the application of neural
networks in navigation issue and the integration of
Global Positioning System (GPS) with Inertial
Navigation System (INS) to present a new
integration scheme for spacecraft attitude
determination [21].

As it can be found from the above literature,
although the classical approaches of multi sensor
data fusion have been examined in several attitude
estimation researches, but application of smart
methods in  designing  satellite  attitude
determination system is not still so prevalent.

In this article, to achieve high accuracy in attitude
estimation of a GEO satellite, equations of motion
and model of sensors will be expressed for the
assumed satellite. Simulation of satellite attitude
estimation is carried out with different views on
sensor data fusion as follows:

* EKF as one of the classical methods

* MLP, RBF artificial neural networks and ANFIS
network as intelligent methods

The efficiency of sensor data fusion in satellite
attitude estimation in comparison with single
sensor methods is proved. Finally, simulation of
algorithms is implemented in MATLAB and the
estimated results obtained from these strategies
will be compared with each other to show the
ANFIS capabilities.

Satellite equations of motion

The equations of motion for a satellite can be
defined as follows [22]:

o=-T"oxJo+Ju (1)

In which, ® € R’ is defined as angular velocity
vector of the body, J is the moment of inertia

matrix and u € R’ is input control torque. Now,
attitude quaternion is employed to express the
attitude kinematics [22]:

1 1_
4=—0(0)g=—E(Qo )
2 2
In which
a=[a, a. a al=[a, @] 3)
and,
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Model of sensors

Sun sensor measures vector of the sun direction in
satellite body frame. Regarding the satellite orbital
position and the position of Earth in its orbit
around the sun, direction of the sun vector is
determined in the orbital frame. So, the measured
vector by the sun sensor is obtained from the
following equation:

Vsb _ VobI/Sn +w (7)

In which w is a random variable with zero mean
and the normal Gaussian distribution with standard

deviation ofo,. In equation (7), the rotation

matrix, which relates the body frame to orbital
frame, is a direction cosine matrix that is defined
in [1].

The basis for modeling of the earth sensor is also
similar to the sun sensor. Whenever the earth
direction is specified in satellite orbital frame
based on orbital data, the earth vector in satellite
body frame that has been measured by the earth
sensor will be obtained through the following
equation (8).

Ve =V V) +w (®)

In which measurement without bias and Gaussian
distribution of noise with standard deviation of &
is assumed.

Model of Extended Kalman Filter

Extended Kalman filter method is a well-known
approach for satellite attitude estimation in noisy
environments. EKF is widely employed for fusion
of sensor data with regard to the simplicity and the
robustness. However, since it must solve many
kinematic and dynamic equations of the satellite at
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any moment, a long delay will be imposed on
system; and therefore, subsystems will lose their
synchronicity.

To utilize this approach in noisy environments, we
must assume that disturbances and noise of
observations exerted on the model is Gaussian.
Otherwise, the filter will lose the ability to provide
the correct estimation. On the other hand, the first
requirement in applying this method and most of
non-intelligent data fusion methods is to have an
appropriate model for the control system along
with parameters of the model. Additionally,
Kalman filter employs first-order approximation
for linearization based on Taylor expansion that is
not relatively a good approximation for complex
nonlinear systems. It is obvious that, lack of the
aforementioned information, or even rough
approximation of them leads to a false estimation
in navigation and situation parameters. Improper
selection of initial values for state variables and
error covariance matrix of Kalman filter will lead
to divergence of the filter and to distance from the
actual values.

Here, the Extended Kalman Filter (EKF) is utilized
to verify and evaluate the efficiency of the
presented method.

Suppose that system and measurement equations
are defined as follows [23]:

X = f(xk—l’ Uy wk—l)

)
z, =h(x,,v,)

In which the random variables w, and v, are

process and measurement noise respectively, and
have Gaussian distribution [23] i.e.

p(w)~nN(0,0) (10)
p(v)~N(0,R)

The Jacobian matrixes of partial derivatives of f

and A with respect to x which is shown by A
and H respectively, can be defined as:

o/
4, = axi(xk_l,uk ,0)

[/]
oh,
H = =—41(%,0)
[i.71 k2
a 1

(In
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Time updating equations of EKF between two

+ —
sampling intervals f,_; and , , denoted as ¥,
and the related measurement update algorithm at

= t; could be extracted as follows [22].
);Ct = f()?,t),)_c(tk_l) = 32.1{-1

X=X, (12)

Dy’ DT -1 (13)
= hH (HFEH +R)

ﬁk =(]_Kka)1_)k

Where for example the symbols 0 and 6 for the

variable @ represent an estimate before and after
the measurement update phase.

Initial Conditions and Filter Parameters

In order to solve the recursive equations given in
equations (12) and (13), some initial conditions
must be considered to estimate the state variables
and covariance of early estimation. The following
values are chosen as the initial condition:

%,(0)=[0.7067 -6x10" 0.0251 0.7071
%, (0)=[0.019 0.020 0.021]

10_2 I4><4 03x3
P= T

—I .
4x4 180 3x3

For the correct operation of the filter, the
availability of the sun and earth vectors in the
orbital frame is necessary. Thus, the problem of
attitude estimation is dependent on the orbit
estimation. To check the attitude estimator's
performance, it is assumed that the sun and earth
vectors in orbital frame are defined as in equations
(14) and (15).
S°=[ 0 o] (14)

E°=[0 1 0] (15)
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It should be noted that accurate estimation of
attitude does not depend on the values of the
vectors, but correct estimation of the vectors by the
orbit propagator is important.

Assuming that the earth and sun vectors are
perpendicular to each other in the orbit frame, it
gives much information from these two sensors. In
order to have a criterion from actual data and the
data infected with noise, it is necessary to solve
satellite equations per initial conditions and
specified control torque to obtain the real data for
the system. After that, data will be contaminated
by noise, and estimation of the desired states takes
place. Therefore, with regard to equations (7) and
(8) we will have:

Zl(sun) = q12 - q22 _q32 + q: + Vl
ZZ(.s‘un) = 2(q1q2 + q3q4) + v2 (16)
Z}(szm) = Z(qIQ3 - q2q4) + v3

Z\eary = 2(q1qz _%%) tv,
2 2 2 2
Zyearmy = 4 T4, =45 T4q, TV (17)

Z3earmy = 2(9,9,—9,9,) + v,

The noise mean value for all sensors are also
assumed to be equal to zero and standard deviation
of the noise of the sun and earth sensors is
considered equal to 0.001. The parameters used in
dynamic part of the model and filter are related to
geosynchronous satellite. We will have:

12186 -53 -1.8
J=| =53 4428 -84 |kgm’
-1.8 -84 14294

o’ =727*%10"rad / s

o/b

The measurement matrix and linearized system
matrix in the Kalman filter equations which
denoted as H and A , respectively, are defined as
follows:

oz,
6q 03x3
H= (18)
aZeanh 0
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Multi-Layer Perceptron (MLP) neural network

Neural Networks include a series of processing
elements called nodes or neurons which are
internally connected to each other by synapses, or
axons.

Each neuron sends stimulations or input data to the
outputs after processing, and each output can itself
be as an input for the next neurons. The
connections between neurons have weighting
coefficients, and organization of neurons and their
connection manner are usually fixed, but
weighting coefficients and biases can change.
Recursive algorithms express neural network
behavior as a learner system. The learning
capability of a neural network means the ability to
configure and update network parameters and
synaptic weights based on experience of
conditions and getting new information [24].

In this study, a Multi-Layer Perceptron network
with an intermediate layer has been used to
estimate the attitude. This structure contains static
arrangement, but can be used to control the
dynamical systems. For this purpose, it is
necessary to bring forward all the information at
any moment which includes dynamics of the
system as network input.

If we show any input data with x; thati= 1,2, ...,
n, then the output of m™ neuron from the first layer
will be calculated from the following equation.

2, =g(X 5w, ) 20)

The matrix w with elements w, ,isa (n+1)x M
dimensional matrix where n is the size of every
input data and M is the number of neurons in the

hidden layer. z  is the input of output layer

m

neurons. Therefore, the output of j™ neuron can
be calculated as:

M
yj = g(Zm=0 Zmumj) (21)
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The matrix U with elementsu ., is a (m+1)xJ

nyj 2
dimensional matrix where J is the number of
neurons in the output layer.

The function g in the hidden layer is a non-linear
function and works as a nonlinear mapping, but in
the output layer, it is a linear function. In this
research, g for the hidden layer is the intended

function tanh(. ) The intended cost function for

neural network is in accordance with the following
equation.

ssE=37 |yt -5 ’

(22)

In this equation, )7 is the amount of a desirable
output that the neural network must have per data.
And 7 is the amount of actual output of the

network per the same data. To update the weights,
Steepest Descent method has been used according
to equation (23).

., - OSSE
im im ,0 aWim )
(23)
. _  0SSE ’
Uy = oy ou

mj

In which, p is the learning rate that is adjusted
according to the desired function. In general, for
training the neural network, the following
algorithm can be considered:

Starting from one initial condition for U, W
Calculation of SSE with U, W available for data
Update of U, W using steepest descent method
Go back to step 2 with new U, W until terminal
condition is met.

Before training the neural network, it is worth to
note that the input data should be normalized so
that the neurons could work in their own linear
area and do not enter into the saturated area. To
stop learning, we utilize a technique to divide data
into training, testing, and validation data. A part of
data is used to build the network through training
and testing. The other part of data that none of the
estimators have seen, is used to validate and
compare the methods. From the existing data, 70%
are used for training, 20% for testing, and 10%
have been considered for validation. The network
learning is done according to both training and
testing data sets so that by using the training data,
the network is trained, and then, one-step readout

M. Fakoor, H.Heidari, B. Moshiri, A R. Kosari

is carried out. In the other words, assuming that
learning is finished, observations of the test data
are given to the network, and the actual output of
the network is compared with the desired output.
With every epoch the error of training data output
is reduced; because, the network operates on the
basis of reduction in training data output error.
Additionally, the error of test data output also
decreases by increasing the number of epoch.
Usually, the output error, according to training
data is less than the error with regard to test data;
because, network learning has taken place using
training data. Reduction in the error of test data
output will continue until the network reaches to a
balance state between generalization and
specialization.  Then, due to  excessive
accommodation of network parameters with
training data, slope of reduction in errors of test
data output decreases and in some cases, the output
errors increase. Figure (1) shows the error curve on

each epoch for training and test data.
Performance, Training and Test
10° \

N
L INS

0 5 10 15 20 25 30 35 40 45
Number of Epoches

Training
Test

MSE

Fig. 1 Mean square error for training and test data vs.
number of epoch
The optimal number of epochs is assumed where
the distance between two curves increases and test
error reduction rate decreases. For instance, the
value of 20 in Figure (1) is virtually the optimal
number of epochs. After finding the best number
of epochs, the number of neurons in the hidden
layer must be specified. The number of neurons in
the hidden layer cannot be obtained with
conventional optimization methods; because, it is
a discrete parameter, while the parameters of the
optimization methods are usually real numbers and
could be differentiated. For this purpose,
considering the optimal number of epochs, the
number of neurons is increased from low to high
and a model is made in any case.
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The error curve relative to the number of neurons
is plotted in Figure (2) for training and test data.

——— Training
1 0-5. a
— Test

Mean Squared Error
5

\\r/\_»/\,\/"\f\/\’\"/\'—v

""\/\/\__V\/\v\/\_/
0 10 20 30 40 50 60
Number of Neurons

Fig. 2 Mean square error for training and test data vs.
number of neurons in hidden layer

As it could be found from Fig. 2, by increasing the
number of neurons, each model will be a reference
for the previous model, and consequently, the
training data error will be reduced. Also, test data
error decreases, and then, starts to increase, or if
the data was rich, it remains constant. The optimal
number of neurons is considered where the
distance between two curves increases and the rate
of reduction in test error decreases. The value of
10, in Figure (2), is approximately the optimal
number of neurons in the hidden layer.

Radial Basis Function (RBF) neural network

RBF network is a three-layer neural network and
is defined as a general function approximator;
unlike the MLP network, it can be easily analyzed.
RBF network basis is Stone theorem that has been
represented in equation (24).

Ve>0;3IM,C,,w; >

Jwbpcr=ywaqu-cp @9

_1
Where A(x)=e o According to Stone

theorem, there are three degrees of freedom in
RBF network called network parameters as
follows:

Gaussian functions location (Cj)

Gaussian functions weight (wi)

The number of Gaussian functions (M)

The hidden layer in RBF network is Gaussian
function instead of sigmoid, and here, comparison
criterion is norm.

In this method, like MLP network for training,
measurement of the earth and sun sensors are
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given to the network as an input in addition to
quaternion and angular velocities. It should be
noted that quaternion and angular velocities are
obtained from solving the satellite's kinematics
and dynamics equations using rank 4 Runge-Kutta
method as target. The same valid data set,
collected for the MLP network has been utilized.
The first, second, and third categories have been
used for training, testing, and validation,
respectively.

Adaptive Network-Based Fuzzy Inference
System (ANFIS) network

Utilizing Neural networks and ANFIS Network for
attitude estimation can greatly enhance the speed
and accuracy of estimation; because, the learning
phase which is very time consuming, takes place
before the satellite launch phase. Therefore, in
space operation, only the matrix multiplication and
addition operations are executed in a matter of
seconds.

ANFIS network provided with increased learning
ability can be used in real time for compensation
and proofing estimation. Moreover, since in
practical applications of engineering, the
observation noise of measurement sensors is not
Gaussian, using the proposed method in
comparison with EKF, which is a conventional and
classical method to estimate satellite attitude, will
have fewer errors.

ANFIS network's feedforward formulas with two
inputs and two labels for each input are obtained
through equations (25) and (26) [26].

W, =g, ()X g (), i=12

(25)
W " o2
W1+W2
fi=px+qy+n
fH=px+q,y+n 26)

fzmﬁi&£=%ﬁ+@ﬁ

w, + W,

In this study, hybrid learning rule "Gradient
Descent" and "Least Square Error (LSE)", has
been utilized to update the parameters of ANFIS
structure. Therefore, Takagi and Sugeno’s fuzzy
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if-then rule has been employed for this purpose.
This method has been introduced by Jang in [26]
for updating the parameters of the ANFIS
structure.

Here, like MLP and RBF networks, measurement
of the earth and sun sensors is given to the network
as the input data in addition to quaternion and
angular velocities as target. Like before, the same
collected valid data set is utilized for learning,
testing, and validation of network as mentioned in
the previous methods.

Results of Simulations

In this section, the results of simulations extracted
from extended Kalman filter, MLP network, RBF
network, and ANFIS network have been
presented. Initially, state variables are estimated
using EKF, and then, relying on the results of the
estimation, these strategies are compared with
each other. To wvalidate and compare these
methods, 10% of validation data set, seen by none
of the estimators, has been used.

The RMSE numerical criterion and graphical
analyses of curve of residuals have been used for
validation of the estimations. The curve of
residuals has higher degree of certainty compared
to numerical criterion, and contains widespread
information on different aspects of an estimate.
The residuals of a fitted model are defined as the
difference between the responses observed in each
step and the corresponding prediction of calculated
response by the model. Mathematically, the
definition of residual for i observation in the data
set is as follows:

e, =y~ f(x,.0) 27)

Where ), is the i ™ response existing in the data
set, X, is the inputs corresponding with that output,

and f(x,,0) is the output obtained from the

model.

The various analyses have been carried out on the
curve of residuals. The most important analysis
includes investigating the zero mean of residuals,
residuals independency, testing whiteness, and
uniformity of distribution of residues with
minimum number of outlier data. If the model is
fitted properly on the data, the distribution of
residuals will be randomized and the relationship
between the input and response variables will have
a statistical relationship. Therefore, if residuals are
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randomly distributed around zero, it indicates that
probably the model has been correctly fitted on the
data. In other words, if a non-random structure is
evident in the residuals, it becomes clear that the
model is poorly fitted on the data. Residuals must
be independent of each other and have zero mean.
Additionally, few residuals are allowed to exist out
of triple the standard deviation of residuals from
the mean (= 3 o). The outlier areas with high
number of residuals must be investigated in more
detail to determine the cause of the poor fitness of
the model.

The residuals whiteness test includes investigation
of whether the correlation coefficients between
residuals are small enough until the desired lag or
not.

The correlation between residuals means that the
number of correlations in the data has not been
described by the made model.

In Table (1), RMSE of satellite attitude
determination parameters per different estimation
methods has been gathered. In addition, the
residual mean for each of 7 considered outputs has
been presented in Table 2.

Table 1. RMSE error in estimation quaternion and
angular velocities for satellite
attitude estimation by several well-known methods
(x10%)
RMSE | EKF | MLP | RBF

ANFIS

ql 9.75 | 11.8 | 8.52 4.04

q2 796 | 6.9 | 5.42 4.04

q3 349 | 105 | 7.28 4.14

q4 390 [ 12.5 | 8.38 4.03

wl 72.53 | 61.2 | 53.33 | 52.03

w2 62.86 | 45.2 (4237 38.04

w3 9.75 | 32.1 | 25.07 | 28.70
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Table 2. Residuals mean in estimation quaternion and
angular velocities for satellite

attitude estimation by several well-known methods

(x107%)
RES-
EKF | MLP | RBF | ANFIS
MEAN
ql 0.39 | 0.760 [ 0.16 | 0.04
q2 0.08 | 0.0416 | 0.02 | 0.14
q3 0.16 0.1 0.10 | 0.03
q4 0.08 [ 0.3940 | 0.23 | 0.09
wl 0.55 [ 9.041 | 1.59 | 0.51
w2 270 | 4.790 | 1.12 | 0.14
w3 435 | 1.462 | 0.57 | 0.49

It can be found that according to two criteria
namely lower RMSE and closeness of residual
mean to zero, in total, ANFIS method is the best
estimator compared to other methods.

Now, we investigate various aspects of its correct
fit on the data to check the validity of the ANFIS
model. Figures (3) and (4) show the distribution of
residuals of estimated quaternion and angular
velocities. It could be observed that residuals have
been distributed uniformly and there is no specific
pattern between them. Additionally, the available
outliers are negligible against the total number of
residuals. Moreover, the variance of residues does
not take an increasing or decreasing trend, and has
a horizontal-band pattern which shows constant
variance of residues.

Residual
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Fig. 3 The distribution of quaternion residuals —
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ANFIS model

The autocorrelation function has been utilized to
evaluate the independency of the residuals. Figures
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(5) and (6) show the autocorrelation of residuals
for different outputs. It can be observed that there
is an insignificant dependency among the residuals
and they have a high independency.
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Fig. 6 The autocorrelation of residuals for angular
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Figures (7) and (8) show the autocorrelation
coefficients of residuals until the lag of 20, based
on 95%  confidence.  Accordingly, the
autocorrelation plot indicates that for the first 20
lags, almost all sample autocorrelations fall inside
the 95% confidence bounds. This issue indicates
that the residuals appear to be white and random
with a probability of 95 percent.

M. Fakoor, H.Heidari, B. Moshiri, A R. Kosari

q1 q2

c 1 c 1

S S

= =

] ]

E 05 E 05

] ]

2 2

PR PR

= 5

£ £

& &

@ 05 @ 05

0 5 10 15 20 0 5 15 20

Lag Lag
3 a4

5 5

5 5

[ [

5 0.5 5 0.5

o o

2 2

s 0 s 0

Q Q

£ £

@ 05 @ 05

0 5 10 15 20 0 5 10 15 20

Lag Lag

Fig. 7 The whiteness test of residuals for quaternion,
95% Confidence Band - ANFIS model

wi w2

c 1 c 1

K] k)

kS =

o o

£ 05 £ 05

g g

1 1

s ° s °

g g

S S

05 9 05

0 5 10 15 20 0 5 10 15 20

Lag Lag
w3

c 1

k)

3

£ 05

g

E

° 0

Q

£

S

9 05

0 5 10 15 20
Lag

Fig. 8 Whiteness test of residuals for angular
velocities, 95% Confidence Band - ANFIS model

Conclusion

In this study, simulation of satellite attitude
estimation was carried out with different views on
sensor data fusion i.e. EKF, MLP, RBF, and
ANFIS networks. In addition, geosynchronous
orbit was considered to solve the satellites attitude
estimation problem. The efficiency of sensor data
fusion in satellite attitude estimation in
comparison with single sensor methods was
proved.

The focus in the first part of the article was on the
satellite modeling; including kinematics and
dynamics of satellite and sensor’s equations. The
Gaussian assumption was made to provide the
suitable conditions for the possibility of comparing
different methods and presentation of an
appropriate model for the control system.
Obtained results from different simulations
showed that, estimation obtained from ANFIS
estimator has the benefit of a higher accuracy
compared to EKF, MLP, and RBF. The mean
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residuals of ANFIS were closer than to zero and its
root mean square error was lower than other
methods assuming their best performance.
Additionally, we measured the credibility of the
designed ANFIS network, utilizing different
graphical analysis of the residual curves. The
residuals were uniformly distributed and there was
no specific pattern between them. Furthermore,
with probability of 95%, residuals were white and
had a high independency.
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