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One of the most effective ways of high-speed motion in water is the motion in the
supercavitation regime. This way provides the possibility to avoid considerable viscose
resistance of boundary layer and consequently reach to very small drag coefficient which can
be several times smaller than, that of the continuous flow. In this study the numerical simulation
of developed and supercavitating flow is performed. The CFX code which served as a platform
for the present work is a three-dimensional code that solves the Reynolds-Averaged Navier-
Stokes equations with a finite volume method. The cavitation model is implemented based on
the use of Rayleigh-Plesset equation to estimate the rate of vapor production. A high Reynolds
number form k-¢ model is implemented to provide turbulence closure. For steady state flows
and poor mesh resolution near the wall (using log-law wall functions), there is a priori no
difference between the two equations formulations. For the different case studies, multi-block
structured meshes were generated and the numerical simulation is performed in a wide range
of cavitation numbers. Results are presented for steady state flows with natural cavitation about
various bodies. Comparisons are made with available measurement of surface pressure
distribution, cavitation bubble geometry (cavity length and cavity width) and drag coefficient.
The simulated results are in a good agreement with the experimental data. Finally, the three-
dimensional results are presented for a submerged body running at several angles of attack.
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phenomenon. The hydrodynamic drag can be
obtained using the integral of the pressure

Introduction

Supercavitation is a phenomenon in which a cavity
is formed behind the underwater vehicle, when it
travels at very high speeds. In order to generate a
cavity that encloses the entire body, the vehicle
should have a high thrust force to maintain such
high speeds to counteract the effect of drag force.
Usually, the drag can be characterized as
hydrodynamic drag and viscous drag. In the case
of supercavitation, the hydrodynamic drag is
considerably much higher than the viscous drag,
since the body does not come into contact with the
fluid. Therefore, the viscous drag is ignored in this
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distribution, caused by the fluid flow, at the nose
of body. In the current study the numerical
simulation is performed for steady state cavitation
flows about disk and cone cavitator with and
without after-body.

The tendency for a flow to cavitate is
characterized by the cavitation number, defined as:

o=L"Lr (1)
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where p is a reference pressure for the flow, p, is
the vapor pressure for the liquid, and the
denominator represents the dynamic pressure.
Clearly, the tendency for a flow to cavitate
increases as the cavitation number is decreased.
With reduce of the cavitation number, five
different regimes are observed in the cavitated
flow including: incipient- , sheet- , partial- , and
super-cavitation.

Catvitation is treated separately from thermal
phase change, as the cavitation process is typically
too rapid for the assumption of thermal
equilibrium, at interface to be correct. In the
simplest cavitation models, mass transfer is driven
by purely mechanical effects, namely liquid-vapor
pressure differences, rather than thermal effects.
Computational modeling of cavitation has been
pursued for years. Early studies primarily utilize
the potential flow theory; they are still widely used
in many engineering applications. Studies dealing
with cavitation modeling through the computation
of the Navier-Stokes equations have emerged in
the last decade. Recently, to account for the
cavitation dynamics in a more flexible manner, the
multiphase transport equation-based models
(TEM) are developed. A review of these studies is
presented here; Singhal et al. [1], Merkle et al. [2],
Kunz et al. [3], [4] and [5], Suaer and Schnerr [6]
and Senocak et al. [7] and [8] have employed
similar models based on this concept with
differences in the source terms. One apparent
advantage of this model comes from the
convective character of the equation, which allows
modeling of the impact of the inertial forces on
cavities like elongation, detachment and drift of
bubbles. Merkle et al. [2] and Kunz et al. [3], [4]
and [5] have employed the artificial
compressibility method. Also, Kunz et al. have
adopted a non-conservative form of the continuity
equation and applied the model to different
geometries.

In the current research, the multiphase mixture
model is used, and the Rayleigh-Plesset model is
implemented in the multiphase framework as an
inter-phase mass transfer model.

GOVERNING EQUATION

The set of governing equations include of the
conservative form of the Reynolds-Averaged
Navier-Stokes equations for the homogeneous
mixture multiphase flows, with an additional
volume fraction transport equation to account for
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the inter-phase mass transfer, denoted in the
Cartesian coordinates, as follow [9]:
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where ¢, represent the liquid phase volume

fraction. The mixture density and the turbulent
viscosity respectively are defined as [9]:
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the density of each constituent is considered to be
constant. The mass transfer rates from vapor to

liquid and from liquid to vapor are denoted #1” and
m‘ , respectively.

Mass Transfer

The Rayleigh-Plesset equation provides the basis
for the rate equation controlling vapor generation
and condensation. The Rayleigh-Plesset equation
describing the growth of a gas bubble in liquid is
given by:

! — 7
dR, +§(dRB)2+20- PP (7
dt 2 di R, ol

where Rp represents the bubble diameter, p, is the
pressure in the bubble that is assumed to be the
vapor pressure at the liquid temperature, p is the
pressure in the liquid surrounding the bubble and
o' is the surface tension coefficient between the
liquid and vapor. Note that this is derived from a
mechanical balance, assuming no thermal barriers
to bubble growth. By neglecting the second order
terms and the surface tension, this equation
reduces to:

dR 2 p -
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The total inter-phase mass transfer rate per unit
volume is:
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This expression has been derived assuming bubble
growth (vaporization). It can be generalized to
include condensation as follows [9]:

e = %2 |2 1P, 7|
R, \3 p

where F'is an empirical factor which may differ for
condensation and vaporization, designed to
account for the fact that they may occur at different
rates (condensation is usually much slower than
vaporization).

Despite the fact that Eq. (9) has been generalized
for vaporization and condensation, it requires
further modification in the case of vaporization.
Vaporization is initiated at nucleation sites (most
commonly non-condensable gases). As the vapor
volume fraction increases, the nucleation site
density must decrease accordingly, since there is
less liquid. For vaporization,cr, in Eq. (10) is

replaced by «,,.(1—«a,)to give [9]:

e, (-a)p, [2lp-A
iy =—F X 3¢ p )sgn@, —p)

(an

o is a volume fraction of the nucleation sites

nuc

) sgn(p, — p) (10)

Eq. (11), is maintained in the case of condensation.
Note that in this model Rp represents the diameter
of the nucleation sites. To obtain an inter-phase
mass transfer rate, further assumptions regarding
the bubble concentration and radius are required

[9].
Turbulence Model and Wall Function

In this work a standard form k — & model with
wall functions is implemented to provide
turbulence closure. For homogeneous multiphase
flow, bulk turbulence equations are solved which
are the same as the single-phase equation, except
that the mixture density and the mixture viscosity
are used. As with velocity, the turbulence scalars
are illustrated as being mixture quantities ([9] and
[10]):
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o and o, are constants and p;

is the turbulence production due to the viscous
forces in Eq. (13), which is modeled using [9]:
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In the present work, the wall function approach is
an extension of the method of Launder and
Spalding ([10]). In the log-law region, the near
wall tangential velocity is related to the wall shear
stress by means of a logarithmic relation. The
formulation of the standard wall functions has the
problem of the singularity at the separation points
where the near wall velocity vanishes. The
problem of inconsistencies in the wall function in
the case of fine meshes can be overcome with the
use of the special wall function formulation here.
It can be applied on arbitrarily fine meshes and
allows you to perform a consistent mesh
refinement independent of the Reynolds number of
the application [9].

NUMERICAL SOLUTIONS

Solver

The CFX commercial code, which is served as a
platform for the present work is a three-
dimensional unstructured mesh code that solves
the Reynolds-Averaged Navier-Stokes equations
with a finite volume method. The solver is fully
coupled and solves the hydrodynamic equations
(u, v, w, p) in a single system. This solution
approach uses a fully implicit discretization of the
equations at any given time step. For the steady
state problems, the time-step behaves like an
acceleration parameter, to guide the approximate
solutions in a physically based manner to a steady-
state solution. The solver uses a multi-grid
accelerated Incomplete Lower Upper (ILU)
factorization technique for solving the discrete
system of linearized equations. An algebraic
Multigrid technique is used carrying out early
iterations on a fine mesh, and later iterations on
progressively coarser virtual ones. The results are
then transferred back from the coarsest mesh to the
original fine mesh. The reader can refer to CFX
solver theory [9] and to specific techniques in
computational fluid dynamics for more details.

Advection Scheme

The discretization of the advection terms is as
follow [9]:

=g+ ppr P
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where ¢ is the value at the upwind node, 7 is the

up
vector from the upwind node to the computed
node, and SV ¢ - Ar is called numerical advection

correction and is as an anti-diffusive flux added to
the upwind scheme. [ =0 leads to the first order

upwind difference scheme, and # =1 is formally

second order accurate. The high-resolution scheme
that is used in the current study, locally computes
3 to be as close to 1 as possible (reducing to first

order near discontinuities and in the free stream
where the solution has little variation) [9].

Boundary Conditions

Velocity components, water and vapor volume
fraction, turbulence intensity, and length scale are
specified at inlet boundaries and extrapolated at
outlet boundaries. Pressure distribution is
specified at outlet boundaries (the parameter
which fixes the cavitation number) and
extrapolated at inlet boundaries. At walls, velocity
components and turbulence quantities are enforced
using wall functions, pressure and volume
fractions are extrapolated.

Configiration T

Fig 1: The computational domain and imposed
boundary conditions for a blunt fore-body.

Mesh Study

In order to properly assess grid resolution
requirements, a range of grid sizes is used. In Fig
2, liquid volume fraction contours, selected
streamlines and the grid are illustrated for selected
cavitation number. For the blunt configuration,
200x40, 280x60 and 350x70 mesh cells are run.
Fig 3 demonstrates that differences between
predicted surface pressures for the medium and
fine meshes are small, with increase of mesh cells
to 420x80 there is no different between
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distributions of pressure coefficient. Note that s arc
length along configuration and d maximum
diameter of body. The fine meshes are used for all
subsequent calculations  presented current
research. For fine-grid near wall points are
established at locations yielding 10<y+<100 (Fig
4).

Summary of mesh influence for different case
study is listed in table 1.

Table 1: mesh influence for different case study

Configuration Mesh cells
disk 200x50+150x10,
280x60+200x20,
350x70+250x30,
420x80+300x40
cone 240x40+150x10,
340x60+250x30,
440x80+300x40
Blunt body 200x40, 280x60,
350x70, 420x80
Cone with after 240x40, 340x60,
body 440x80

Fig 2: Predicted liquid volume fraction, selected
streamlines and
computational grid for a blunt fore-body ato = 0.3 .
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Fig 3: comparison of predicted surface pressure
distribution

for a blunt fore-body ato =0.3.
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Fig 4: Yplus profile for a blunt fore-body at
c=03.

RESULTS AND DISSCUTIONS

Axisymmetric Results

Two sets of results by the authors are presented
here. The first set includes axisymmetric steady-
state analyses of natural cavitation about several
configurations. These solutions are compared to
semi-empirical and experimental measurements to
demonstrate the capability of the employed model.
The second set of results includes a variety of
three-dimensional analysis of supercavitating
flows of relevance to high-speed vehicles. In order
to demonstrate the three-dimensional capability of
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the method, a model of the blunt fore-body
configuration is studied follow is run at numerous
angles of attack.

In this section results are presented for steady
state cavitation flows about disk and cone
cavitator. The pressure distribution on the
wetted surface of disk for o =0.24 is showed
in Fig 5a. There is close agreement with
experimental measurement of Rouse and
McNown [11]. The corresponding Reynolds
number is 284569 based on maximum
cavitator diameter (d=1.27cm).

Drag coefticient for disk cavitator presented in
Fig 5b, exhibit a total variation inC,, /1 + o of
under 1 percent clearly demonstrating the
accuracy of Reichardt’s semi-empirical
formula, which treats it as constant.

Current Study
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Fig 5: distribution of pressure coefficient on the
wetted surface of the disk (a), variation of drag
coefficient for infinity of length of cavity (b)
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Cavitation bubble geometry (cavity length and
cavity width) and drag coefficient are the main
characteristics of axisymmetric supercavitation. In
Reichardt work in a horizontal free-jet water
tunnel he found the cavities to be ellipsoids with
axes given by the semi-empirical expression [13].

L c+0.008
d_ o(1.70 +0.066)

max

(16)

He also found the relation between drag and cavity
width to be [13]:

7)

d [ Coo 1"
d | o(1-0.1320"%)

where L, dua, and d, are cavity length, maximum
diameter of the cavity and the diameter of the

cavitator respectively. Reichardt suggested C,,(0)

for disks to be 0.80 and relation for C, (o0)as
follow [13]:

C,(0)=C, 01 +0] (18)

In Figs 6 liquid volume fraction contours are
illustrated for the disk and the cone cavitators with
specified cavitation numbers.

The main parameter of the cavity (L/d,D,, /d)

are compared with the experimental measurement
of Self and Ripken [12], and with Reichardt semi-
empirical formula in Fig 7. Reichardt experiments
were limited too <0.12, and the Eq. (18) is
arbitrarily extrapolated to higher cavitation
numbers in these figures.

P ——

(a) (b)
Fig 6: liquid volume fraction contours for conical
(a) and blunt (b) fore-body without after-body at
o =0.15.
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Fig 7: supercavity parameter (D/d and L/d) vs.
cavitation number for a cone (a, ¢) and disk (b, d)
cavitator.

Furthermore, in the current study, two
configurations of the Rouse-McNown [11]
experimental work are also analyzed. These

included 0-caliber (blunt), and conical (45° cone
angle) cavitator shapes with cylindrical after-body.
The corresponding Reynolds number based on
maximum cavitator diameter (d=2.54cm) is
136000.

In Figs 8a and 8b field liquid volume fraction
contours are illustrated for selected cavitation
numbers.

Figs 9a and 9b show comparisons between
predicted and measured surface pressure
distributions for conical and blunt configurations
at specified cavitation number. In this figures s is
arc length along configuration and d is diameter of
body. The achieved results are in good agreement
with those of experimental measurements.

—— ‘,

@ ®
Fig 8: liquid volume fraction contours for conical
(a) and blunt (b) fore-body with after-body at

o=0.3.
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Fig 9: comparison of numerical and experimental

surface pressure distribution at o = 0.3
for conical (a) and blunt (b) fore-body.

Three Dimensional Results:

In Fig 10 are showed sample results of a three-
dimensional simulation of cavitating flow over a

blunt body for angles of attack of 0°, 2.5°, 5°,
7.5° and 10°. These plots include sample
streamlines and the cavitation bubble shape as
identified with an isosurface of «, =0.8. A
420x80x80 mesh corresponding to the fine mesh
size previously mentioned in grid studies is

generated. The corresponding cavitation number
in these figures is 0.29.

(e)

Fig 10: 3-d flow field about blunt fore-body at several

angle of attack (a, b, c,d and e are 0, 2.5, 5, 7.5 and 10

angle of attack respectively), Cavitation number =0.29
and liquid volume fraction =0.8 isosurface.

CONCLUSIONS

In the current study, multi-block structured meshes
were generated, for the different case studies and
the numerical simulation was performed in a wide
range of cavitation numbers. The conclusions
apply for axisymmetric body:
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Comparison  between experimental and
achieved numerical simulation results for
cavity geometry (length and cavity width) show
good agreement.
The variation of drag coefficient for infinity
length of the cavity about disk cavitator is under
1 percent clearly demonstrating the accuracy of
Reichardt’s semi-empirical formula, which
treats it as constant.
The pressure distributions associated with
natural cavitation are well predicted for a
cylindrical body with a blunt fore-body.
Weaknesses in the current work were observed
in the cone fore-body analyses.

And, several interesting features are observed in

the three-dimensional results as follow:
The flows are seen to be highly three
dimensional.
A recirculation zone at the end of cavity is
larger in the higher angle of attack.
The bubble is shown to have its greatest axial
extent off in the symmetry plane.
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