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This article is aimed to investigate the interference elimination between multiple aircraft 
using game theory. A differential game is used to eliminate the interference if all the interfering 
aircraft cooperate to eliminate the interference or if each makes a rational decision based on 
their own interests. All interfering aircraft calculate the interference elimination route in 
cooperative mode by defining the flight priority. In the non-cooperative state, the problem of 
eliminating the interference is investigated using the Nash equilibrium, and then the new path 
is calculated. A point mass model has been used to implement this problem, which is converted 
into a linear model by changing the control variable. The above problem is solved using the 
quasi-spectral numerical solution method. In order to validate the presented method, the 
problem of eliminating the interference between several aircraft in two-dimensional space has 
been studied, and the results show the appropriate performance of the presented method. 
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Introduction1234  
With the increase in the number of aircraft, the 
problem of route interference and its solution has 
gained lots of attention as several aircraft may be 
in the same area at the same time, so they are 
forced to modify the flight path to avoid a 
collision. Like free flight [1], where each aircraft 
corrects its route in the interference area, this 
concept can be used to eliminate the interference 
between aircraft in other areas. Therefore, each 
aircraft acts as a decision-maker agent, and the 
problem of eliminating interference can be 

 
1 . PhD. Student ,(Corresponding author) 
2 Associate professor 
  
  
 

 

expressed as a game problem. In this problem, 
each aircraft is a player who must choose a path to 
eliminate the interference based on its goal and the 
decisions of other interfering aircraft. Since the 
variables of the state vector are a differential 
function in this problem, a differential game is 
proposed. Also, each aircraft can receive and share 
flight information with the help of communication 
technology, such as the ADS-B receiver. 
Therefore, the differential game is a game with 
complete information. 
The problem of eliminating interference and the 
optimal path has been the focus of many 
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researchers in recent decades. The problem of 
eliminating interference has been studied as an 
optimization problem using the Monte Carlo 
method [2], non-linear programming [3], mixed-
integer non-linear programming [4], and the 
principle of minimization [5]. Reference [3] used 
non-linear programming to solve the problem of 
eliminating the concentrated interference between 
several aircraft by considering the state and control 
constraints. The norm of velocity and the path and 
direction angles are considered as a function of the 
cost. This research is aimed to eliminate the 
interference between multiple aircraft based on 
game theory, and the cost function is the sum of 
the control vector norm, which is a more suitable 
criterion for the least fuel consumption or control 
effort. Moreover, The problem of the maximum 
number of aircraft in an interference elimination 
problem has been solved using the mixed-integer 
non-linear programming method [4]. This 
reference used velocity control to solve the 
interference, which cannot solve the interference 
in one line. Likewise, the aircraft's functional 
limitations are not considered in this reference. 
Reference [6] has investigated the problem of 
eliminating the interference between several 
airplanes so that the interference between the 
airplanes in two-dimensional and three-
dimensional space has been solved using three-
dimensional rotation maneuvers. The paths to 
eliminate the interference are quasi-optimal, and 
each aircraft returns to its original path after the 
interference elimination maneuver. Based on 
statistical information, reference 7 has tried to 
eliminate the interference between the planes in 
the modeling stages of the problem of eliminating 
interference as a system with several independent 
agents and based on the priority of the maneuver 
of each of the agents. The research has investigated 
different objective functions of flight. Then, based 
on this information, the routes without interference 
were calculated using the multivariable 
optimization method. Therefore, the objective 
function is modeled based on the interests of 
airlines and air navigation service providers. In 
reference [8], the problem of eliminating 
interference between multiple aircraft has been 
studied. In this article, the separation condition is 
considered cylindrical, which cannot be 
implemented due to the lack of continuity. 
Therefore, the oval condition is considered 
instead. Also, in solving the problem of 
eliminating the interference between several 

airplanes, the interference elimination was done in 
stages and two by two. In other words, the 
elimination was not implemented simultaneously 
among all aircraft. Also, fixed obstacles and no-fly 
zone are not considered in the environment of 
interference elimination. 
Reference 9 has investigated the problem of the 
movement of wheeled robots on aircraft using 
game theory. Also, the coordinated flight game 
theory and pursuit and escape problems [12], [13] 
have been considered for the set of unmanned 
aerial vehicles [10], [11]. Reference [14] has 
investigated the movement of several agents in the 
aircraft with fixed obstacles as a differential game. 
This research considers velocity as a control vector 
and position as a system state vector. The 
condition of non-collision is considered an 
inequality constraint between two factors. The 
control vector and state have no limitations in this 
research. The difference between reference [9] and 
reference [14] is only in the dynamics of the 
investigated device. Also, reference [15] has 
validated the problem of eliminating the 
interference between several factors using the 
differential game theory in two-dimensional space 
without considering the constraints of the state 
vector and expression control and by simulating 
the movement of the interference between two 
aerial vehicles. 
The pseudospectral method is a direct solution that 
converts ordinary and partial differential equations 
into non-linear equations and the integral actuator 
into a sum actuator [16]. Despite equality and 
inequality constraints, the Pseudospectral method 
writes the problem into a non-linear programming 
problem (NLP) with state vector estimation and 
control using Legendre polynomials [17]. This 
method has been used to solve non-linear optimal 
control problems related to optimizing the path of 
various devices [17]-[20]. 
The problem of eliminating interference is 
expressed as a differential game and has been 
investigated in two cooperative and non-
cooperative modes. Therefore, the actual 
limitations of an air taxi have been considered to 
implement the interference elimination routes. In 
defining the interference elimination problem as a 
differential game, it is assumed that each aircraft 
knows the flight information of other interfering 
aircraft. The stated problem has been solved using 
the Pseudospectral numerical solution method. 
In the following, part II presents the dynamic 
model of the aircraft's point mass and the collision 
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condition between two aerial vehicles. Differential 
games and the expression of the interference 
problem as a cooperative differential game are 
presented in section III. After that, in part IV, the 
pseudospectral solution method is explained, and 
the differential game problem is transformed into 
non-linear programming. The simulation results 
are presented in part V based on the proposed 
hypotheses. Finally, conclusions and suggestions 
for future work are presented. 

Dynamic model and interference problem 

In order to accurately investigate the problem of 
eliminating interference, it is inevitable to use an 
accurate and realistic model of the dynamics of the 
aerial vehicle's body. In addition to the main forces 
on the aircraft, the used model should also include 
the functional limitations of the aircraft. Also, a 
minimum safe distance is considered based on the 
rules of low-altitude flight to avoid collision 
between two aircraft, which must be maintained 
during the interference elimination maneuver. 
Each of these topics will be examined below. 

Aircraft dynamics model 

This article uses the three degrees of freedom 
model, considering all the forces affecting the 
aircraft. This model is used in many path 
optimizations and interference elimination 
problems [1], [3], [20]. The limitations of the 
aircraft in the dynamic model are considered state 
and control vector constraints to enable them to 
track the obtained route. In this model, the engine 
thrust vector is in line with the vehicle's velocity 
vector, the constant mass of the vehicle, and the 
flat and fixed ground. 

 
Figure 1. Aircraft and local coordinate device 

 
 

Considering the above assumptions, the dynamic 
model of the aircraft is as follows. 

𝑥ప̇ = 𝑉௜ cos(𝛾௜) cos(𝜒௜) (1) 
𝑦ప̇ = 𝑉௜ cos(𝛾௜) sin(𝜒௜) (2) 

ℎప̇ = 𝑉௜ sin(𝛾௜) (3) 

𝑉ప̇ =
(𝑇௜ − 𝐷௜)

𝑚௜
− 𝑔 sin(𝛾௜) (4) 

𝛾ప̇ =
𝐿௜𝑐𝑜𝑠(𝜑௜) − 𝑚௜𝑔𝑐𝑜𝑠(𝛾௜)

𝑚௜𝑉௜
 (5) 

𝜒ప̇ =
𝐿௜𝑠𝑖𝑛 (𝜑௜)

𝑚௜𝑉௜𝑐𝑜𝑠(𝛾௜)
 (6) 

In the above equations, 𝑖 = 1.2 … . 𝑄 is the number 
of interfering aircraft. 𝑥௜ . 𝑦௜ is the position of each 
aircraft on the horizon plane and ℎ௜ is the height 
above the ground, 𝑚௜  is the aircraft’s mass, and is 
considered constant. 𝛾௜  is the direction angle, 𝜒௜  is 
the side angle and 𝐿௜. 𝐷௜ is the drag and lift force 
of the aircraft. The control inputs of the aircraft 
are: load coefficient 𝑛௜ = 𝐿௜/𝑚௜𝑔 which is 
produced by the control surface of the elevator, the 
angle 𝜑௜  which is produced by the combination of 
the rudder and aileron control surfaces and  𝑇௜  is 
the propulsion force. Since the aircraft has 
functional and structural limitations, the aircraft’s 
control and state variables have limitations during 
the interference elimination. The non-linear 
motion dynamics (1-6) can be expressed in a linear 
form by changing the following variable [36] to 
facilitate the analysis of the interference 
elimination problem. 

𝑥̈ = 𝑢തଵ.      𝑦̈ = 𝑢തଶ.     ℎ̈ = 𝑢തଷ (7) 
 

In the above equations, 𝑢ଵ. 𝑢ଶ. 𝑢ଷ are new control 
variables. By deriving relation to time from 
equations (1-3) and substituting equations (4-6) 
and using equation (7), the non-linear dynamics 
becomes the dynamics of the following state 
space. 

𝑧ప̇ = 𝐴௜𝑧௜ + 𝐵௜𝑢௜ 
𝑝௜ = 𝐶௣𝑧௜ 
𝑣௜ = 𝐶௩𝑧௜ 

(8) 

𝑧௜ = ൣ𝑝௜
் 𝑣௜

்൧
்

 is the state vector that includes the 
position vector 𝑝௜ ∈ ℝଷ and the velocity vector 

𝑣௜ ∈ ℝଷ. The vector 𝑢௜ = ൣ𝑢ത௜భ
 𝑢ത௜మ

 𝑢ത௜య
൧

்
 is the new 

control input. 
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𝐴௜ = ቂ
0 1
0 0

ቃ ⊗ 𝐼ଷ  . 𝐵௜ = ቂ
0
1

ቃ ⊗ 𝐼ଷ 

𝐶௣ = [1 0] ⊗ 𝐼ଷ  . 𝐶௩

= [0 1] ⊗ 𝐼ଷ 

(9) 

 
𝐼ଷ ∈ ℝଷ×ଷ is the identity matrix and ⊗ represents 
the Kronecker coefficient. The primary control 
variables can be calculated from the new control 
variables using the following equations. 

𝜑

= atan ൤
𝑢തଶ cos 𝜒 − 𝑢തଵ sin 𝜒

cos 𝛾(𝑢തଷ + 𝑔) − sin 𝛾(𝑢തଵ cos 𝜒 + 𝑢തଶ sin 𝜒)
൨ 

(10) 

𝑛 =
cos 𝛾(𝑢തଷ + 𝑔) − sin 𝛾(𝑢തଵ cos 𝜒 + 𝑢തଶ sin 𝜒)

𝑔 cos 𝜑
 

(11) 

𝑇 = [sin 𝛾(𝑢തଷ + 𝑔) + cos 𝛾(𝑢തଵ cos 𝜒 + 𝑢തଶ sin 𝜒)]𝑚
+ 𝐷 

(12) 

tan 𝜒 =
𝑦̇

𝑥̇
 (13) 

sin 𝛾 =
ℎ̇

𝑉
 

(14) 

A collision between two aircraft 

Collision is a situation when the distance between 
two aircraft is less than a safe limit. In the flight 
space outside the control of the air traffic center, 
the rules of visual flight prevail; therefore, the safe 
distance is not defined as a specific value [21]. 
Hence, a default value is considered for this safe 
distance. 
The condition of non-collision between two 
aircraft i and j is equal to: 

ฮ𝑍௜ − 𝑍௝ฮ ≥ 𝑅௦ (15) 

Where Z is the position of each aircraft in three-
dimensional space, 𝑅௦ is the safe distance between 
two aircraft and actuator ‖… ‖ is the second norm 
of the vector. As the defined field of view is 1500 
meters in the plane and 600 feet in height, this 
article considers a spherical safe distance with a 
radius of 150 meters (this distance can change and 
be any other safe value). The initial distance for the 
beginning of the interference elimination 
maneuver is 1500 meters. 

Differential game 

In the problem of eliminating interference, each 
aircraft can be considered a player or decision-
maker in the cooperative differential game. The 
considered differential game has been investigated 

in a centralized framework so that each aircraft 
knows the flight information of the others. Also, 
the number of aircraft in an interference 
elimination problem remains constant. In general, 
a differential game with N players is defined as 
follows. 
If the goal of each player 𝑖 = 1 … 𝑄 is to choose a 
strategy (𝑢௜) that minimizes the objective function 
 𝐽௜. 

𝐽௜ = 𝐾௜൫𝑥൫𝑡௙൯, 𝑡௙൯ +

∫ 𝐿௜൫𝑥, 𝑢ଵ, … , 𝑢ொ , 𝑡൯𝑑𝑡
௧೑

଴
 , 

(16) 

Considering the following differential constraint 

𝑥̇ = 𝑓൫𝑥, 𝑢ଵ , … , 𝑢ொ  , 𝑡൯  𝑥(𝑡଴) = 𝑥଴ (17) 

Where 𝑥𝜖𝑅௡ is the state vector, 𝑢𝜖𝑈  is the 
selected strategy from the set of strategies 
available to the player. Also, 𝑥଴ is the initial 
conditions of the game and 𝑡௙  is the final time of 
the game. In the differential game problem, the 
control vectors 𝑢(𝑡) and state 𝑥(𝑡) may be 
bounded or unbounded based on the physical 
conditions of the problem. 

𝑥௟ ≤ 𝑥(𝑡) ≤ 𝑥௨ 
𝑢௟ ≤ 𝑢(𝑡) ≤ 𝑢௨ 

(18) 

 
The subscripts l,u indicate the lower and upper 
limits for the state and control vectors. Also, there 
may be constraints on the state vector or control 
vector in the initial conditions, final conditions and 
along the way. These can be equality or inequality 
constraints. 

𝑔௘௤൫𝑥(𝑡), 𝑢(𝑡)൯ = 0 
𝑔௜௡௘௤൫𝑥(𝑡), 𝑢(𝑡)൯ ≤ 0 

(19) 

In the above equation, 𝑔௘௤ and 𝑔௜௡௘௤ are equality 
and inequality constraints of the problem, 
respectively. 
There are different solution methods for the above 
differential game with different assumptions. 
Besides, there are three methods to solve a 
differential game: Nash equilibrium, Minimax, 
and Non-inferior method [22]. The Nash 
equilibrium method is used for non-cooperative or 
competitive games. The Minimax method is for 
games where there is no communication between 
players, and players only know that the others are 
playing Nash. Finally, the Non-inferior method is 
a cooperative and negotiated mode of the 
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differential game. This article uses the Non-
inferior method and Nash equilibrium. For more 
information about the Minimax method, refer to 
the reference [23]. 

Non-inferior method 

In game theory, Non-inferior methods are used 
when cooperation and exchanging opinions are 
intended to reach the best solution. The best 
solution can be found among the answers with the 
following condition. 
Definition. The strategy (answer) is the 
cooperative differential game belongs to the set of 
𝜇 = {𝜇ଵ. … . 𝜇ொ}  so that for each answer set ϕ =

{𝜙ଵ. … . 𝜙ொ} 

{𝐽௜(𝜇) ≤ 𝐽௜(𝜙) , 𝑖
= 1, … , Q}𝑜𝑛𝑙𝑦 𝑖𝑓 {𝐽௜(𝜇) = 𝐽௜(𝜙) , 𝑖
= 1, … , 𝑄} 

(20) 

Finding the solution set μ is equivalent to solving 
the optimal control problem with the vector 
optimality criterion. The answer to this problem is 
actually solving the set of N-1 parameters of an 
optimal control problem. Therefore, the answer to 
the game problem from the Non-inferior method is 
equivalent to the optimization of the following cost 
function. 

𝐽 = 𝜇ଵ𝐽ଵ + ⋯ + 𝜇ொ𝐽ொ (21) 

for 𝜇 = ൛𝜇ଵ. … . 𝜇ொൟ, so that 

෍ 𝜇௜
ଶ = 1 , 𝜇௜ ≥ 0 , 𝑖 = 1, … , 𝑄

ொ

௜ୀଵ

 
(22) 

In negotiation game problems, which is equivalent 
to finding a μ vector, other constraints should be 
applied to the problem [22]. In this article, the μ 
coefficients are based on the delay time of each 
aircraft relative to its designated route. Hence, an 
aircraft with a higher time delay has a higher effect 
coefficient, and all aircraft with the same delay 
have similar coefficients. 
Definition. The effect coefficient of each aircraft is 
defined as the ratio of the delay time of each 
aircraft to the total delay time of all others. 

𝜇௜

= ቆ
∆𝑡௜ + 1

∑ ∆𝑡௜ + 𝑄ொ
௜ୀଵ

ቇ

଴,ହ

 

(23) 

In the above equation, ∆𝑡௜ is the flight delay of the 
i-th aircraft. 
The response of the above differential game can be 
calculated using numerical solution methods in the 
optimal control to solve the above problem. 

Nash equilibrium 

Definition. If 𝑼ഥ ௜  is the set of acceptable strategies 
for the i-th player, and if the following equation 
holds for all values of 𝑖 = 1. … . 𝑄 [17], the strategy 
𝑢௜

∗(… ) is a Nash equilibrium strategy. 

𝐽௜൫𝑢ଵ
∗ . … . 𝑢ொ

∗ ൯

≤ 𝐽௜൫𝑢ଵ
∗. … . 𝑢௜ିଵ

∗ . 𝑢௜ . 𝑢௜ାଵ
∗ . … . 𝑢ொ

∗ ൯. ∀𝑢௜ ∈ 𝑼ഥ ௜   
(24) 

 
Assumption 1. In the differential game (16) and 
(17), if the objective function and the dynamics of 
the players can be written as follows: 

𝑓൫𝑋. 𝑢ଵ . … . 𝑢ொ . 𝑡 ൯

= 𝑓଴(𝑡. 𝑋)

+ ෍ 𝑓௜(𝑡. 𝑋)𝑢௜

ொ

௜ୀଵ

 

(25) 

𝐿௜൫𝑋. 𝑢ଵ. … . 𝑢ொ . 𝑡൯

= ෍ 𝐿௜௝൫𝑡. 𝑋. 𝑢௝൯ . 𝑖 = 1. … . 𝑄

ொ

௝ୀଵ

 

(26) 

lim
|௨೔|→ஶ

𝐿௜௜൫𝑡. 𝑋. 𝑢ଵ. … . 𝑢ொ൯

𝑢௜
= +∞.  𝑖

= 1. … . 𝑄. 

(27) 

Also, if 𝑼ഥ ௜  is a closed and convex set in the space 
𝑅௠೔  and the condition (27) is satisfied, then the 
differential game will have a unique solution [37]. 
Nash equilibrium is a set of players' strategies, 
such that each player's strategy is the best choice 
against the strategy of other players. In other 
words, in the Nash equilibrium strategy, none of 
the players tend to deviate from their decision. 
Also, if assumption 1 holds true in the differential 
game, the game has a unique solution. 
Therefore, the problem of eliminating interference 
between several aircraft can be modeled as a 
differential game. According to the dynamics of 
the aircraft movement in equation (8) and the 
standard format of the differential game in 
equation (17), if Q number of aircraft interfere in 
the interference space, the dynamics of the 
interference elimination game is described as 
follows: 
 



108/ 
 

 
 

Masoud Mirzaei Tashenizi, Amirreza Kosari Journal of  Aerospace Science and Technology 
Vol. 13/ No. 2/  Summer- Autumn  2020 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈 (28) 

Where 𝑿 ∈ ℝ଺ொ is the state vector of the game, 
𝑼 ∈ ℝଷொ  is the control vector of all aircraft and 
𝑨. 𝑩 are the square matrix of the coefficients of the 
state and the control vector, respectively, which 
are defined as follows: 

𝑋 = ൣ𝑧ଵ
் . … . 𝑧ொ

்൧
் (29) 

𝑈 = ൣ𝑢ଵ
் . … . 𝑢ொ

் ൧
் (30) 

𝐴 = ൦

𝐴ଵ 0଺×଺

0଺×଺ 𝐴ଶ

… 0଺×଺

0଺×଺ ⋮

⋮ 0଺×଺

0଺×଺ …

⋱ 0଺×଺

0଺×଺ 𝐴ொ

൪ . 𝐴௜

= ൤
0ଷ×ଷ 0ଷ×ଷ

0ଷ×ଷ 𝐼ଷ×ଷ
൨ . 𝑖

= 1. … . 𝑄 

(31) 

𝐵𝑈 = ൥

𝑏𝑢ଵ

⋮
𝑏𝑢ொ

൩ . 𝑏𝑢௜ = ൤
0ଷ×ଵ

𝑢௜
൨ . 𝑖

= 1. … . 𝑄 

(32) 

Also, according to the equation (15), the condition 
of non-collision between two aircraft i and j is 
defined as follows. 

𝐷෩௜௝ = 𝐷෩௝௜ = ฮ𝑝௜ − 𝑝௝ฮ ≥ 𝑅௦. 𝑖

≠ 𝑗 
 𝑝௜ = 𝑋[6 × (𝑖 − 1)

+ 1: 6 × (𝑖 − 1)
+ 3]. 𝑖 = 1. … . 𝑄 

𝑝௝ = 𝑋[6 × (𝑗 − 1)

+ 1: 6 × (𝑗 − 1)
+ 3]. 𝑗 = 1. … . 𝑄 

(33) 

Where the equation (33) is applied as an inequality 
constraint in the differential game. 
The objective function can be the least control 
effort, the least amount of velocity changes, the 
least amount of deviation from the path, and 
others. In this research, the objective function is 
the least control effort. Therefore, the objective 
function of each aircraft is as follows: 

𝐽௜ = ∫ 𝑢௜
ଶ𝑑𝑡

௧೑

଴
  (34) 

Finding the Nash equilibrium for problems (28)-
(34) is equivalent to simultaneously solving the Q 
number of the optimization problem so that each 
problem has 𝑸 − 𝟏 number of inequality 
constraints. Using the necessary condition of the 
first order, we have the optimality and the 
Hamiltonian function. 

𝐻௜ = 𝑢௜
ଶ + 𝜆(𝑨𝑿 + 𝑩𝑼) . 𝜆 =

ൣ𝜆ଵ. … . 𝜆଺ொ൧   
(35) 

Where 𝜆௜  is the pseudo-state vector for the i-th 
aircraft. If the control 𝑢௜

∗ for the i-th aircraft is a 
Nash equilibrium, all the Hamiltonian functions 
are minimized with respect to 𝑢௜  . According to 
Pontryagin's principle of minimization, the 
following condition must be satisfied for all values 
of 𝑢௜ [17]. 

𝐻௜൫𝑥∗. 𝑢ଵ
∗ . … . 𝑢ொ

∗ . 𝜆. 𝑡൯

≤ 𝐻௜൫𝑥∗. 𝑢ଵ
∗ . … . 𝑢௜ିଵ

∗ . 𝑢௜ . 𝑢௜ାଵ
∗ . … . 𝑢ொ

∗ . 𝜆. 𝑡൯ 
 ∀𝑢௜ ∈ 𝑼ഥ ௜. 𝑡 ∈ [0. 𝑡௙]  

(36) 

 
In order to apply inequality constraints by defining 
the Lagrangian function using inequality 
constraints (34), we have [17]: 

𝑳௜ = 𝐻௜ + 𝛾̿௜ × 𝐷෩௜௝ . 𝛾̿௜ =

ൣ𝛾̿ଵ. … . 𝛾̿ொିଵ൧. 𝑗 = 1. … . 𝑄 . 𝑖 =

1. … . 𝑄 . 𝑖 ≠ 𝑗  

(37) 

 
𝛾̿𝒊  is the coefficient of the Lagrange function and 
× represents the inner multiplication of the two 
vectors. The necessary condition is those Lagrange 
functions (37) should be minimized with respect to 
all 𝒖𝒊 values: 

𝜕𝐿௜

𝜕𝑢௜
|௨೔ୀ௨೔

∗ = 0   
(38) 

We also have state and pseudo state vectors: 

𝑋̇ = −
𝜕𝐿௜

𝜕𝜆
. 𝑋(𝑡଴) = 𝑋଴ 

(39) 

𝜆ప̇ = −
𝜕𝐿௜

𝜕𝑋
= − ቆ

𝜕𝐻௜

𝜕𝑋

+
𝜕𝐷෩௜

𝜕𝑋
ቇ . 𝜆௜൫𝑡௙൯

= 0 

(40) 

𝛾̿ ≥ 0.  𝛾̿𝐷൫𝑥∗൫𝑡௙൯. 𝑡௙൯ = 0 
  

(41) 

𝛾̿௜(𝑡) ≥ 0.  𝛾̿௜𝐷෩௜௝ = 0. 𝛾̿ప̇(𝑡) ≤ 0  
  

(42) 

Equation (41) is used to apply equality constraints 
(final conditions), and equation (42) as 
complementary slackness conditions for indirect 
application of inequality constraints. The set of 
equations (28)-(42) shows the problem of 
eliminating interference using game theory, where 
each of the Hamiltonian functions is minimized 
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relative to the control vectors. This problem is 
actually equivalent to the simultaneous solution Q 
of the optimal control problem, such that the state 
vector is 𝑿 ∈ ℝ𝟔𝑸, the pseudo-state vector is 𝝀𝒊 ∈
ℝ𝟔𝑸. 𝒊 = 𝟏 … 𝑸 and the control vector is 𝑼 ∈ ℝ𝟑𝑸. 
Also, in this problem, there is an ∑ (𝒊 − 𝟏)

𝑸
𝒊ୀ𝟐  

number of inequality constraints to prevent 
collision. For the above problem, if the 
Hamiltonian function is defined as (43), the 
optimal control problem becomes a differential 
game problem and it reduces the number of quasi-
state differential equations from 𝑄 × 𝟔𝑸 to 6𝑄, 
which reduces the calculation volume. The new 
Hamiltonian function is defined as follows: 

𝐻ഥ = ∑ 𝑢௜
ଶொ

௜ୀଵ + 𝜆̅(𝑨𝑿 + 𝑩𝑼) 
. 𝜆̅ ∈ ℝ଺ொ  

(43) 

And therefore, the Lagrangian function will be as 
follows: 

𝐿ത = 𝐻ഥ + 𝛾̿ × 𝐷෩௜௝.    𝜇̅ =

ൣ𝛾̿ଵ. … . 𝛾̿ொିଵ൧. 𝑗 = 1. … . 𝑄 . 𝑖 =

1. … . 𝑄 . 𝑖 ≠ 𝑗  

(44) 

In this case, the optimal condition of the Lagrange 
function with respect to the control vector will be 
as follows: 

𝜕𝐿௜

𝜕𝑢௜
|௨೔ୀ௨೔

∗ =
𝜕𝑳ത

𝜕𝑢௜
|௨೔ୀ௨೔

∗ = 0   
(45) 

For state and pseudo state vectors, we will also 
have: 

𝑋̇ = −
𝜕𝐿௜

𝜕𝜆௜
= −

𝜕𝐿ത

𝜕𝜆̅
= 𝐴𝑋
+ 𝐵𝑈.  𝑋(𝑡଴)
= 𝑋଴ 

(46) 

𝜆̇௜ = −
𝜕𝐿௜

𝜕𝑋௜
= −

𝜕𝐿ത

𝜕𝑋௜

= − ቆ
𝜕𝐻ഥ

𝜕𝑋௜

+
𝜕𝐷෩௜

𝜕𝑋௜
ቇ . 𝑖

= 1. … .6𝑄. 𝜆௜൫𝑡௙൯

= 0 

(47) 

𝛾̿ ≥ 0.  𝛾̿𝐷෩൫𝑥∗൫𝑡௙൯. 𝑡௙൯ = 0 
  

(48) 

𝛾̿௜(𝑡) ≥ 0.  𝛾̿௜𝐷෩௜௝ = 0. 𝛾̿ప̇(𝑡) ≤ 0  
  

(49) 

By comparing the set of equations (21) and (34), it 
can be easily proved that the elimination of 
cooperative interference with the same priority 
coefficient is the Nash equilibrium point of the 
problem. In other words, in the case of any non-
cooperative interference elimination, the decision 
of each of the players will be the same as non-
cooperative interference elimination with equal 
priority. It should be noted that if the objective 
function of the aircraft is different or if they have 
an objective function that depends on the state or 
time variable, the response of the Nash equilibrium 
will not be the same as the cooperative state. 
For the differential equations (43) and (49) with 
the conditions (48) and (49) with the initial 
conditions of the state vector and the final 
condition of the pseudo-state vector, it is 
challenging to obtain a closed solution for this set 
of constrained differential equations. Therefore, 
numerical methods are used to solve it. This article 
investigates this problem using the pseudo-
spectral direct solution method. In addition to 
accurately estimating the state vector and optimal 
control, the pseudo-spectral method also estimates 
the pseudo-state vector with high accuracy [31]. 
Unlike other numerical solution methods, such as 
projectile and multi-projectile, this method is not 
sensitive to the initial guess of the pseudo-state 
vector. Considering the non-linear nature of the 
problem, the initial guess for the pseudo-state 
vector is very difficult [29], [38]. Therefore, the 
pseudo-spectral method has been used to solve the 
problem of eliminating interference as a 
differential game. In the following, the pseudo-
spectral method is described. 

Solving the problem of interference 
elimination 

As it does not have an analytical solution, the 
answer to the differential game problem stated in 
the previous part is obtained using direct solution 
methods. In addition to accurate estimation of the 
state vector and optimal control, the 
Pseudospectral method also estimates the pseudo-
state vector with high accuracy [16]. This method 
has been used to solve the Nash equilibrium of 
game theory problems [24], [25]. In the following, 
solving this problem is explained using the 
Pseudospectral method. 
Pseudospectral method 
The pseudospectral method estimates the 
problem's solution using Legendre polynomials of 



110/ 
 

 
 

Masoud Mirzaei Tashenizi, Amirreza Kosari Journal of  Aerospace Science and Technology 
Vol. 13/ No. 2/  Summer- Autumn  2020 

order K in a set of specific points. These points are 
defined in the interval [-1.1] so that if the points 
are the roots of the Legendre polynomial, it is 
called Legendre-Gauss (LG). If the roots are 
obtained from the linear combination of the 
Legendre polynomial, it is called Legendre-Gauss-
Radau (LGR). Also, if polynomial derivative roots 
are used, it is called Legendre-Gauss-Lobatto 
(LGL). LG, LGR, and LGL points are defined in 
the interval (-1,1), [-1,1) or (-1,1], and [-1,1], 
respectively. In this article, the LGR method has 
been used for solving the differential game 
problem. For more information about this method, 
refer to [16]. 
First, the problem should be defined in the interval 
[-1,1]. Therefore, by using the variable change, the 
time interval is changed from 𝑡𝜖ൣ𝑡଴. 𝑡௙൧ to the 
interval 𝜏𝜖[−1.1]. 

𝑡 =
1 + 𝜏

1 − 𝜏
 (50) 

Then the state vector 𝑥(𝜏) is estimated using the 
Legendre basis interpolation functions 𝐿௟(𝜏) of 
order K+1 as below, 

𝑥(𝜏) ≈ ෍ 𝑋௟(𝜏)

௄

௟ୀ଴

𝐿௟(𝜏),       𝐿௟(𝜏)

= ි
𝜏 − 𝜏௠

𝜏௟ − 𝜏௠

௄

௠ୀ଴,௠ஷ௟

,   (𝑙 = 0 … 𝐾) 

(51) 

In addition, the control vector for each aircraft is 
estimated using the Legendre polynomial of order 
K as below. 

𝑢௜(𝜏) ≈ ෍ 𝑢௜(𝜏)

௄ିଵ

௟ୀଵ

𝐿௟
∗(𝜏) ,    𝐿௟

∗(𝜏)

= ි
𝜏 − 𝜏௠

𝜏௟ − 𝜏௠

௄

௠ୀଵ,௠ஷ௟

   𝑖 = 1 … 𝑄, 𝑙

= 1 … 𝐾 

(52) 

The derivative of each of the polynomials at LG 
points can be expressed as a differential estimation 
matrix 𝐷 ∈ ℝ௄×௄ାଵ. If derived from equation (51) 
with respect to time: 

𝑋̇(𝜏) ≈ ෍ 𝑋௟

௄

௟ୀ଴

𝐿̇௟(𝜏) = ෍ 𝐷௟𝑋௟

௄

௟ୀ଴

 
(53) 

After using the differential estimation matrix, the 
dynamic constraint of the system (17) turns into an 
algebraic constraint. 

෍ 𝐷௠௟𝑋௟

௄

௟ୀଵ

−
𝑡௙ − 𝑡଴

2
𝑓൫𝑋௠, 𝑈ଵ௠ … 𝑈ொ௠ , 𝜏௠; 𝑡଴, 𝑡௙൯

= 0,  (𝑚 = 1 … 𝐾) 

(54) 

In the above equation, we have 𝑋௠ ≡
𝑋(𝜏௠), 𝑈௠ ≡ 𝑈(𝜏௠) and 𝜏௠𝜖[−1.1). Other 
variables are defined as below. 

𝑋଴ ≡ 𝑋(−1) 
𝑋௙

≡ 𝑋଴

+
𝑡௙ − 𝑡଴

2
෍ 𝜔௟𝑓(𝑋௟ , 𝑈ଵ௟ … 𝑈ொ௟ , 𝜏௟; 𝑡଴, 𝑡௙)

௄

௟ୀଵ

 

(55) 

  𝜔௟  are Gauss coefficients. In this article, these 
coefficients are considered the same for all points. 

The continuous cost function (16) can be written 
in the following discrete form: 

𝐽௜

= 𝐾௜൫𝑋௙ , 𝑡௙൯

+
𝑡௙ − 𝑡଴

2
෍ 𝜔௟𝐿௜(𝑋௟ , 𝑈ଵ௟ … 𝑈ொ௟ , 𝜏௟; 𝑡଴, 𝑡௙), 𝑖

௄

௟ୀଵ

= 1 … 𝑄 
𝑱 = 𝜇ଵ𝐽ଵ + ⋯ + 𝜇ொ𝐽ொ 

(56) 

Border constraints and along-the-path constraints 
(19) are described as follows: 

𝑔௘௤൫𝑋௟ , 𝑈ଵ௟ … 𝑈ொ௟ , 𝜏௟; 𝑡଴, 𝑡௙൯ = 0 
𝑔௜௡௘௤൫𝑋௟ , 𝑈ଵ௟ … 𝑈ொ௟ , 𝜏௟; 𝑡଴, 𝑡௙൯ ≤ 0 

(57) 

The cost function (56) and the algebraic 
constraints (54), (55), and (57) constitute an NLP 
problem in such a way that its solution is the 
solution of the Non-inferior differential game 
problem. The NLP problem obtained has been 
solved using SNOPT software in MATLAB 
environment. 

Simulation results 

Information from an air taxi produced by Lilium 
Jet Mobility has been used for simulation. With a 
weight of 400 kilograms and a set of electric 
motors with a power of 320 kilowatts, this aircraft 
can fly at a speed of 85 meters per second [26]. The 
considered hypotheses are as follows. 
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As stated in part 3, the problem of eliminating 
cooperative and non-cooperative interference will 
have the same answer with certain assumptions. In 
this part, the problem of eliminating the 
interference between four interfering aircraft has 
been solved for cooperative mode with the same 
priority coefficient and inequality priority 
coefficient. In the case of eliminating interference 
with the same coefficient, the answer to the 
problem is equal to the elimination of non-
cooperative interference (Nash equilibrium) (the 
priority coefficient is equal to 𝜇௜ = 0.5. 𝑖 =
1 … 4). Also, it is assumed that all aircraft have 
entered the interference zone with a certain initial 
velocity. In the second case, it is assumed that one 
aircraft has a priority coefficient six times that of 
the others (in this case, the priority coefficient is 
equal to 𝜇௜ = 0.333  .  𝑖 = 1.2.3 and 𝜇ସ =
0.8165). The initial conditions considered for this 
example are as follows: 

𝑣଴ = 𝑣௙ = 10
𝑚

𝑠
          10 ≤ 𝑣(𝑡) ≤ 85 𝑚/𝑠 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = ൞

𝐴𝐶ଵ = [750;  0]

𝐴𝐶ଵ = [750;  1500]

𝐴𝐶ଵ = [0;  750]

𝐴𝐶ଵ = [1500;  750]

 

𝑓𝑖𝑛𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = ൞

𝐴𝐶ଵ = [750;  1500]

𝐴𝐶ଵ = [750;  0]
𝐴𝐶ଵ = [1500;  750]

𝐴𝐶ଵ = [0;  750]

 

 

 
Figure 1. Cooperative interference elimination with 
the same priority coefficient (non-cooperative-Nash 

equilibrium) 

 
Figure 2. The amount of deviation of each aircraft 

during the interference elimination maneuver from the 
main route 

 
Figure 3. Eliminating the interference of four aircraft 

with different priority coefficients 

 
Figure 4. The amount of deviation of four aircraft per 

inequality priority coefficient 
The performance characteristics of all four interfering 

aircraft are considered the same.  
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Therefore, if the flight priority is the same, the 
amount of deviation from the route for all the 
aircraft will be the same. as a result, the routes to 
eliminate interference will be the same. Figures 1 
and 2 show this finding. These conditions are also 
the answer to the problem of non-cooperation. If 
one aircraft has a higher priority, the amount of 
aircraft deviation with a higher priority is less than 
the others. Since the path of one aircraft is affected 
by the others, there will be an unequal amount of 
deviation, shown in Figures 3 and 4. 

Conclusion 

This article uses the theory of differential games, 
the non-inferior method in cooperative and non-
cooperative ways, and Nash equilibrium to solve 
the problem of eliminating interference based on 
flight priority. In the non-inferior game, the agreed 
criterion to resolve the interference can be the 
flight time delay of the number of passengers or 
other priorities. For example, the priority of an 
aircraft with a longer time delay is considered 
higher. Similarly, the definition of the Nash 
equilibrium in the non-cooperative game problem 
shows that the answer to the problem of 
eliminating interference with the objective 
function of the least control effort is the same as 
the answer to the problem of the cooperative game 
with the same priority. In other words, the Nash 
equilibrium is the same as the answer to the non-
inferior problem. The above issue can also be 
implemented by the airlines for route allocation. 
Therefore, in the areas where there is a possibility 
of collision between several aircraft, their priority 
is defined according to the airline's agreement. To 
this end, the model of three degrees of freedom of 
aircraft movement has been used, and the 
functional limitations of the aircraft have also been 
applied. For further research, it is suggested that 
future papers focus on the answer to the problem 
of eliminating interference in cases where some 
interfering aircraft have different target angles. 
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