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In this paper, a neural network backstepping controller is designed for the control of a
reentry vehicle. The backstepping control system is applied to the nonlinear six degree of
freedom dynamics of the reentry vehicle for tracking the desired input. The neural network is
used for estimation of nonlinear parts of backstepping controller during entry to atmosphere
and to estimate the nonlinear terms as well as the external disturbances. Numerical simulations
have been performed to verify the performance of the proposed control method.
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Introduction

The dynamic model of a reentry vehicle is highly
nonlinear, multivariable, considerable coupling
and contains uncertain parameters due to the wide
flight envelope and the high Mach number.
Furthermore, it is difficult to measure or estimate
the atmospheric properties and aerodynamic
characteristics at the hypersonic flight altitude. As
a result of this, the linear control methods cannot
be used to design a control system for reentry
vehicles. It is essential to improve the speed and
the robustness of the control system.

Therefore, nonlinear control methods, such as
dynamic inversion, backstepping control, have
been the main techniques used for hypersonic
flight control.

Backstepping design method is an effective design
approach for nonlinear control systems. That
offers unique advantages in dealing with nonlinear
system problems. Taking cascade linear or
nonlinear system by selecting the suitable
Lyapunov function and constructing virtual
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control laws step by step makes a process in which
a stable control system can be achieved [1]. This
method can guarantee the global stability of the
closed loop system in the case that regulating and
tracking have asymptotic behavior. The traditional
adaptive backstepping design methods acquire the
system to be parameterized [2]. In this paper,
based on backstepping control algorithm, a
nonlinear neural network backstepping controller
is derived for plants with arbitrary relative degree.
The backstepping controller is designed in two
steps and for each step a nonlinear function is
estimated by Bayesian regularization Neural.

Equations of motion

The motion of 6-DOF unpowered rigid flight
vehicle can be separated in to the transitional
motion of the center of mass using a flight path
coordinate system and the rotational motion of a
body fixed coordinate system about the center of
mass (rotational or attitude motion). The center of
the motion of mass is caused by the forces that act
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on the vehicle. It is used for generating trajectory
and designing a guidance law. Most applications
assume steady coordinated turns such that the
sideslip angle is zero. The equations of
translational motion are given as follows [3,4]:
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where h, ¢, 6, v, y, y are altitude, latitude,

longitude, velocity, flight path angle, and heading
angle respectively. L and D are lift and drag,
respectively. g = » is the acceleration due to

u
(Re+h)
gravity with 4 being the earth’s gravity constant
and Re is radius of the earth. The rotational
equations governing the attitude dynamic of the
rigid vehicle during the reentry flight are given as
follows:

a=-pcosatan B +q—rsine tan § —

COSO

(7 —dcos y —Bcosdsin )+

cos (7)
sing
cos

sinG

()@cosyfgb'sin)(siny)+

(95 +é(cos¢cos ysiny —singcosy))
cos

[ =psina —rcosa

M. Khoshnood, H. Ashoori

+sino[y —dcos y +6 cos psin x|

_ o (8)
+coso[ ycosy —¢sin ysiny]
—fcosa
(cos(¢) cos(y)sin(y)—sin(¢) cos(y))
g =—pcosacosff—gsinff—rsinacos f
+csin f— ysiny —gsin ycosy (=
+6[cos ¢ cos y cosy +sinpsin ]
A M 1 I,w

po LM LM, G LL )

I\'\'I:f _I':f ]\1']:: _I‘:: IJ',\'I:
- (11)
g=—

]1'\'

]\‘(M‘ (I‘(.\‘_ I\‘]’) I.\'.\'
— yeli] (12)

= ,
].‘C\']:_' = ]\_Z [Y.VI::

where, a, B and 0 denote, angle of attack
(AOA), sideslip angle, and bank angle |,
respectively. p, q and r are roll rate, pitch rate and
yaw rate, respectively. Mx, My and Mz are rolling
moment, pitching moment, and yawing moment
The expressions of the lift (L) and drag (D) are as
follows:

L=qScL(a). (13)

D=qSCD (a). (14)

where CL( @) and CD( @) are the lift coefficient
and drag coefficient, respectively, and they are the
function of AOA. Aerodynamic area of vehicle is
given by S and dynamic pressure is given with q =
0.5 pv2.

Backstepping Controller Design

The state equations in Eqs (7-9) can be rearranged
as:

x1=f1 +glx2+hlu. (15)
x2=f2 +glu (16)
where f; = [f1:f2'f3] and f, = [f21:f22:f23]
estimated by NN.
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In the design of the neural network backstepping
controller as shown in Fig. 1, u is designed in such
a way x; tracks x¢ Equations in the real features
include the aerodynamic uncertainties and the
disturbance. As a result of this, the nonlinear
functions f; and f, must be estimated f; , f, are
the estimation of f; and f, The difference between
x; and x§ defined as:

z=x; —xf (24)

The following Lyapunov function candidate can
be proposed:
1 (25)
" 7::1 Gt fl fl
where, ci is the positive constant, the time
derivative of Eq (25) is semi-negative definite, if
x2 and the corresponding adaptation law are

chosen as:
e 3 - 26
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where Ki is a positive definite gain matrix. It
should be noted that the right side of Eq (26)
includes the actual control input u, and during the
maneuvers, hl is close to zero. Therefore, hlu in
Eq (26) can approximately be ignored in the design
of the backstepping controller. Taking the time
derivative of Eq (25) yields:
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Fig. 1. Neural Network Backstepping Control Scheme
Applying Eq.(26) to Eq(27) yields

V1 =—2TKlzl <0 (28)
Therefore, x; converges to x¢ The difference
Between x, and x§ is defined as follows:

Zy =Xy — xg (29)
consider the following Lyapunov function

candidate
1 1
N=oaatonnt /i f+ f L (30)

where, c2is a positive constant. The tlme derivative
of Eq (30) is semi-negative definite, if u is chosen
as

=g [-f,+x7-g'2-K,z,] @)
where, K2 is a positive definite gain matrix. By
substituting Eqs(24-26) and (29) into the time
derivative of Eq (30) one can note that:
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Applying Eqs(26) and (31) and (32) yields:

Vz =—z Kz —z.K,z, <0

(33)

The Estimation Procedure

The feedforward Neural Network is used for
estimation of f1 and f2 in Eq (26-31). The network
has 10 layers and based on multi-layer perception.
It solves a data fitting problem by a two layer
feedforward network trained with Bayseiyan
regularization. Bayseiyan regularization is a
network training function that updates the weight
and bias values according to Levenberg-
Marquardt optimization [5].

Regularization modifies the cost function by
adding a term proportional to the square of the
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norm of the parameter vector 0, hence, that the

parameters O are obtained by minimizing:

~ N
Vy(0) =) e (t.0)+ k6K’ (34)

r=1
where A is a positive constant that has the effect
of trading variance error in VN ( 8 )for bias error
the larger the value of A, the higher the bias and

lower the variance of 6.

Simulation Results and Analysis

In order to verify the performance of the proposed
control system, six degrees of freedom nonlinear
simulations are carried out. The proposed neural
network backstepping controller improves the
performance of Dbackstepping control and
combines advantages of neural network with a
nonlinear method for controlling a nonlinear
system where all parameters change rapidly. The
dynamic of reentry in section 1 is nonlinear and
coupled. The backstepping controller designed in
this study was added to the neural network
algorithm.
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Fig. 2. Angle of attack and its desired input.
The desired states of reentry during simulation are
considered as follows:

x =la,.B,.0,1 (37)
where, adis a desired angle of attack, and S 4is

the desired sideslip angle, and 04 is the desired

bank angle.

The desired values for all of angles are in terms of
certain functions of time. it is also noted that
because of its low rates of change in sideslip angle
and zero initial value, this variable is a zero
function of time.

The initial conditions are assumed to be:
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[00 BO 60 ] = [0.030 — 73] (35)

The initial values for height and velocity are 90
[km] and 5222 [m/s] respectively. The standard
model considered in ref [6] is used as the model of
the atmosphere. Furthermore, the earth is assumed
to be spherical and aerodynamic coefficients are
computed using Missile Datcom.
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Fig. 3. Sideslip angle and its desired input

sl 0

T~

Tesatoaks

Fig. 5. Height of vehicle during the flight
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Fig. 6. Velocity of the vehicle during the flight.

Conclusion

In this paper, the attitude controller based on
neural

network backstepping control is designed for
reentry

vehicle in spite of model uncertainty, and external
disturbance. The developed Neural network
backstepping controller (NNBC) scheme assures
the stable tracking of the attitude angle with model
uncertainty and external disturbance. The
nonlinear functions terms are estimated by the
feedforward neural network. The stability of the
system is proven with Lyapunov theory, and the
convergence of the tracking is ensured.
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