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Parafoil-payload system, as a complex system, is used widely today and has various
usages. This system is a multibody complex whose components, have dynamic interactions
and relative movements. The present study deals with the multibody modeling and
simulation of nine degrees of freedom flight dynamics of a parafoil-payload system, which
includes six degrees of translational and rotational freedom of parafoil set (parachute and
ropes), and three degrees of relative rotational freedom of the payload. By kinematic and
dynamic analysis of the system components, a nonlinear model with 18 state variables is
obtained. This model has three controlling inputs. In addition to symmetric and asymmetric
aerodynamic brakes, the shifting of the weight of the payload with respect to the parafoil is
considered, which leads to the deflection and change of the transverse installation angle of
the parachute with respect to the parafoil set. The apparent mass and moment of inertia of
the parafoil parachute, restraining forces, relative movements between objects,
longitudinal and transverse installation angles and also the effect of wind are examined. In
order to evaluate how the flight dynamics of the system work and the study of the factors
affecting it, the nonlinear differential equations of the model are developed. After
examining its stability using Lyapanov method, the model undergoes a numerical
integration as well as simulation for several flight conditions and under different inputs by
the code and program developed in MATLAB software. The simulation results show the
flight stability that is achieved after launching from a high altitude and by which the flight
dynamic modeling of the system is validated.
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Introduction

Flight dynamics of the parafoil-payload system are
different than those of a conventional airplane. In
other words, the large distance between the
aerodynamic center of the parachute and the center
of mass of the whole system, the relative movements
between the components of the system and the
presence of apparent mass will lead to this
difference. Due to the joint between the parafoil and
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the payload, these two objects have independent
relative movements. Therefore, the parafoil-payload
system should be considered as a multibody set.
Depending on degrees of freedom (2 to 12), taking
into account the relative movements between the
components of the system, each model has different
specific purpose and level of accuracy. In most
references, the model with 6 degrees of freedom,
which includes three degrees of translational and
three degrees of rotational freedom has been used to
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design guidance and control algorithms. Article [4]
uses dynamic model of 8 degrees of freedom
(including six degrees of freedom of parafoil
movement and two degrees of relative freedom of
movement of the payload) with the purpose of
software developing for a modeling and simulation
most compatible with reality. Reference [5]
examines the dynamic model of 9 degrees of
freedom, six degrees of rotational and transfer
freedom of the parafoil and three degrees of
rotational freedom of the payload. This article,
regarding the shape of the parachute as a set of
interconnected panels and also using defined
aerodynamic coefficients, provides reasonable
control responses to right and left brake shifts and
longitudinal installation angles. Article [7], by
simply introducing the shifting weight of the
payload in the parafoil control of a 6-degree-of-
freedom model, has investigated various influential
factors such as the distance of the payload to the
parachute wing. Article [8] also discusses the use of
transverse installation angle in guiding and
controlling a 6-degree-of freedom model of the
parafoil-payload system.

In the mentioned articles, the angles of longitudinal
and transverse installation, apparent mass and place
in which it applies, transverse displacement of the
weight of the payload with respect to the parafoil
frame and wind flow are not directly used in
extracting the equations. In the present paper,
assuming the longitudinal installation angle of the
parachute wing is constant, a control mechanism at
the junction between the parafoil and the payload is
considered so that the payload will have a transverse
displacement relative to the center of the mass of the
parafoil. This distribution, which is accompanied by
a shift in the length of the ropes attached to the
parachute wing, causes a change in the uniform
distribution of the mass of the payload in the ropes
from the initial state. This control mechanism
actually plays a role in guiding and transverse
control of the system as an alternative to asymmetric
brake movement. The present work, developing the
relations related to the effect of the apparent mass
and determining the place in which it applies, tries
to develop more accurate equations of dynamic
models, contrary to previous works, which, to
simplify, have considered the apparent mass as a
single point on the aerodynamic center or on the
center of the parafoil mass. This paper, using a 9-
degree-of-freedom dynamic model, starts with the
multibody modeling of the system, and, after
linearization and the study of the stability of the
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model, analyzes the flight dynamic behavior of the
parafoil-payload system by providing some
examples of dynamic responses. It needs to mention
that the equations and symbols are written according
to the standards given in the reference [9].
According to Figures 1 and 2, the parafoil-payload
system is modeled as a parachute wing with a fixed
(rigid) shape that has two symmetry plates xz and yz
and is connected to the payload by means of ropes
connected to it, through joint c. This model includes
six degrees of rotational and translational freedom
of the parafoil and three degrees of rotational
freedom of the payload relative to the parafoil.
Parafoil (parachute wings and the ropes attached to
it) and the payload rotate freely around the joint
(gimbal type), relative to each other. In this model,
using a control mechanism, the joint has a transverse
displacement to the parafoil, which leads to the
displacement of the weight of the payload relative to
the parafoil set. This system consists of two main
frames, parafoil and payload, which their base triads
are located in the centers of mass of parafoil and
payload, points S and B, respectively. The parachute
wing frame and the related triad are located at point
A, the aerodynamic center of the parachute wing. To
express the orientation of the parachute wing frame
relative to the parafoil, the coordinate system (]P) of
the parachute, in terms of longitudinal I" and lateral
A installation angles, parafoil body coordinate
system (]B), to express the orientation of the parafoil
frame relative to the inertial reference frame (]1),
according to Euler roll angles ¢B, the pitch 6B, and
yaw B, the inertial coordinate system that acts as
an interface and fixed coordinate system at the point
c. The payload Coordinate System (]S), to express
the orientation of the payload frame relative to
inertia, in terms of the relative Euler angles of the
roll @ S, picth 6 S, and Yaw vy S, the aerodynamic
coordinate system (JA), arising from the relative
wind around, with the aid of the angle of attack oB
and the sideslip of PB, is associated with the
parachute wing coordinate system. The Wind
coordinate system (W) which is connected to the
inertia coordinate system by angles of inclination n
and azimuth p. The transfer matrices of the
parachute with respect to the parafoil coordinate
systems [T] PB, the aerodynamic with respect to the
parachute coordinate systems [T] AP, and the wind
with respect to the inertia coordinate systems [T] WI
are given in Equations 1, 2, and 3. For short, instead
of cos and sin functions, the symbols C and S with
the corresponding lower case are used, respectively.
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The transfer matrices between each of the parafoil
and the payload body with respect to the inertia
coordinates, [T] BI and T] SI, respectively, are
generally expressed as Equation 4 matrices, except
that the parafoil and payload Euler angles must be
placed in this matrices.
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Geometric and mass characteristics of the model
Geometric and mass characteristics of the model
include parafoil specifications: span length b, chord
length C, parachute wing curvature a, parachute
wing thickness t, parachute wing reference area SP,
rope length R, parachute mass mC, and payload
specifications: payload mass mS , the payload
reference area SS, length xS, width yS and height zS
of the payload are listed in Table 1.

Table 1. The Geometric and Mass Characteristics of the
Parafoil-payload system

m.  |R{m) |5, t(m) |a(m) |c(m) |b(m)

(ke) (m?)

5 6.6 28.49 | 0.67 1.16 |3.7 7.7 Parafoil
z, ¥= X5 Ss ;
[ {m) ! _ .
|07 0.5 0.7 0.5 140 lpa,,.(,ad

The position vector of the center of the mass of the
payload relative to the joint C expressed in the
payload coordinates, the position vector of the
center of rotation of the parachute wing T relative to
the center of the mass of the parafoil B expressed in
the parafoil body coordinate, the position vector of
the aerodynamic center A relative to the center of
rotation of the parachute in the parachute wing
coordinate system, and the position vector C relative
to the center of rotation of the parachute expressed
in the parafoil body coordinate system are shown as
[ssc]s = [0 0 0.5]T, [sTB]B= [00 -0.58]T, [SAT]P=
[0.925 0 O]T, and [scr]®= [0L6.481]", respectively.
L is the transverse displacement of the C joint,
which is performed by the corresponding control
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mechanism. The changes of this displacement are in
the form of Equation 5.

L=k (U, ~L),att=0—L=0 (5)

In this case, Uy is the input and K;, is a constant value
that depends on the type of operator used. The
changes of the transverse installation angle A are
also proportional to L and are obtained from
Equation 6.

A=d (\ e xcos® A (5., ), =6.481 (6)

In this model, the longitudinal installation angle is
considered I' = -9 deg.

Aerodynamic characteristics of the model

Aerodynamic coefficients of drag force Cpy, lateral
force Cyp, and lift force Cpp , according to the
reference 6 (pages 25 and 26), are considered as
lookup tables for a similar parafoil. The
aerodynamic coefficients of the roll moment CIP,
pitch CmP, and yaw CnP, which are considered as
the normal relations of a flying vehicle, are
considered according to the reference [10]; they
have been omitted here for the sake of brevity.

Multi-body modeling of parafoil-payload system

In order to model the system, the Newton-Euler
method was used, which is performed by developing
kinematic equations, transfer and position dynamics
for the payload and the parafoil as well as the
constraint equations between them. The set of
nonlinear equations consists of 18 state variables,
which has the general form of relation 7. These
equations represent a completely complex and
coupled system. In this regard, X are the state
variables and U are the control inputs.

X=f(x,0)

r-fbu b bl ot T S0, 40,

dt dt
U = {5\ '511 ’ UL }

In the relation 7, [Sg]' and [v'B]' are the
displacement vector and the inertia velocity of the
parafoil in the inertia coordinate system,
respectively. [wB']® and [wST]® are the angular
velocity vectors of the parafoil and the payload
relative to the inertial frame in their preferred
coordinate systems. ®B and ®S are matrices of
Euler angles of the parafoil and the payload,
respectively. & and 9, are symmetric and
asymmetric displacement of aerodynamic brakes,
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and uy is also related to the transverse displacement
of the payload weight relative to the parafoil.
The Kinematics of the parafoil-payload system

The translational and rotational kinematic equations
of the system are as follows:

[0 ] =bs

dit

p 1 sin ¢, tan G, cos@y tan B,
= O =|0 cos@y —singg [a)B‘r ]B
O singg/cosfy cosgy [cosby

cos @g tan &g
S cos¢@ —sing
T S -

@ 1 sin @g tan Hg
e =0
0 singg/cos@s cos@g /cosb

]@yr

The parafoil equations

The parafoil equations include kinematic and
dynamic equations of translation and rotation. With
the development of kinematic relations, the relation
of translaional acceleration of the parafoil is
obtained in the body coordinate system as follows.

A R I

dt
+ [S CyB ]B [i

I T

In the relation 9, [a'cs]®,[ QB']®, and [ Scas]® are the
Inertial translational acceleration of the joint C, the
skew-symmetric matrix of Parafoil angular velocity
vector, and the skew-symmetric form of the position
vector of the joint relative to the mass center of the
parafoil in the parafoil coordinate system,
respectively.

d
Due to [E sTB] = 0 ,we have:

0
is. B g 5+ iq u= ¢
dr | Tlar ("T &t "

0
According to the forces exerted on the parafoil, the
Newtonian relation and also the relation 9, the
translational dynamic equation of the parafoil will
be as follows:

1 el + [l [F, ..]
[P [F,)

In the relation 11, m”and [g]’ show the parafoil mass
and the gravity rate in the inertial coordinate system.
[Fs]" represents the inertial constraint force of the

B
m [aB] =

u‘p]) ]
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connection junction in the inertial coordinate
system, which is exerted from payload to the
parafoil. The aerodynamic forces in the parachute
coordinate system are as follows:

-Cp
=4S, [T] 1

I !

[rhert

[ ( Ly

In this relation, the dynamic pressure qp is as
follows:

5
wind |~

To =21V
el 1 O g T

[V'a]?and [v¥"d,]” are the speed of the aerodynamic
center relative to the inertial frame and the speed of
the aerodynamic center relative to the relative wind
in the parachute coordinate system, respectively.
[V'wina]™ is the wind speed relative to inertial frame
in the wind coordinate system.

The apparent force [Fpp]® exerted on the parachute
wing, which in fact originates from the apparent
mass, is obtained by the rotational derivative of the
apparent linear moment with respect to the inertial
frame in the parafoil body system as follows:

[F app ]B = _[D ‘p rmn}g

P IV e i (A i T
—[M, ][SM,B ]E I(UB[
:hﬁsmﬂyﬁ¢MWMﬂm

o] Lo | -l Yl b

0 m.zy, 0
‘[Maﬂ]: _[MF ][SM,.B]B = ]:_ myZy, 0 0}

0 0 0

m, 0 0 0 —zy O
[M F]: 0 my; 0 [SMLB]B = 2, 0 0
0 0 m. 0 0 0

In the relation 14, considering the form 2, my is the
apparent mass in the first direction of the parafoil
body system, located at the apparent mass center of
M,, my and m,, also, are the apparent masses in the
second and third directions of the parafoil
coordinates, located in the center of the apparent
mass of my, respectively. Zni and zn2 are the vertical
distances of the apparent mass centers relative to the
center of the mass of the parafoil. [smis]® is the
antisymmetric matrix of the position vector of

] fori=12
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apparent mass centers relative to the parafoil mass
center in the parafoil body system. For the sake of
brevity, the equations myx, my, M, Zni and zy2 are not
mentioned. How to obtain these quantities are
mentioned in the reference 1.

Considering the moments applied to the parafoil and
by the Euler relation, the attitude dynamic equation
of the parafoil is as follows:

2o it -
¢
[’F]PB ’M paero ]P + [Mupp ]H + [?{ B ]ﬂ [T]m [Fhfllr

+ [?]PH [S.-IH ]P [Fp—m'm ]‘” + [T]m [M B ]I

In this relation, [Is]® is the inertia moment matrix
in the parafoil body system. [scpg]® and [sap]” are the
skew-symmetric matrices of the position vector of
the joint relative to the center of parafoil mass in the
parafoil system, and the skew-symmetric matrix of
the position vector of the aerodynamic center
relative to the center of mass of the parafoil in the
parachute coordinate system, respectively.

[Mg]' is the inertial constraint moment which is
applied to the parafoil through the joint. The
aerodynamic moment in the parachute coordinate
system [Mp-ero]” is obtained according to the roll,
pitch, and yaw moment coefficients as equation 16:

bC,,
P ——
] =qpSp|cC

mp

bC,

np

[p

p—aero

The apparent moment [Map,]® is obtained through
the rotational time derivative of the apparent angular
moment [hgp]® relative to the inertia frame in the
parafoil body system as follows:

v, P =-Io'n,, I
s [hupp ]E = [IF 1")81 ]E + [SJ,',B]B [Pupp }B = [1"51 IC"BI ]ﬂ ki
(b5 -bha ) sori=12
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In the relation 17, Luyppx » Lapp-y , and Loy are apparent
inertia moments in the direction of the first, second,
and third axes of the parafoil body coordinate
system. How to obtain them is mentioned in the
reference 1.

The equations of the payload

The payload equations include kinematic and
dynamic relations. The translational acceleration of
the payload mass center in the payload coordinate
system [as]® is obtained as follows:

tP .
["'\} = _|"’\| .

‘[ o m“—‘\ vy Plas ] [sse, FF + [.;j‘ 'y

dt

[Sscs]® and [QS]S are skew-symmetric matrices of
the position vector of the payload mass center
relative to the joint C and the angular velocity vector
of the payload frame relative to the inertia in the
payload machine, respectively. [alcs]® is the inertial
translational acceleration of the joint in the
coordinate system of the payload.

The translational dynamic equation of the payload is
as follows:

ol =P lel +1F.., F +TFIRY

M and [Fs]' are the mass of the payload and the
internal constraint force in the inertial coordinate
system, which is applied to the payload through the
joint. The aerodynamic force applied to the payload
is calculated as follows, in terms of the drag
coefficient of the payload:

=Cp,

Iﬁl\f:n'm]x - é?,\' SS 0 L] Ei.‘l' = % ‘1,"\‘."f““‘-
0

The wind speed relative to the payload [vV"%]S is
thus obtained:

pse F = bt F - ¥ bl

Using the Euler relation, the attitude dynamic
equation of the payload in the payload coordinate
system using the moments applied to it:

s} [d—’ »* ] +laFlrisFlo™ ] =
[se.s FIrt [FY + 71 s}
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[I55]° and [S'css]® are the moment of inertia of the
payload and the skew-symmetric matrix of the
position of the joint C relative to the center of mass
of the payload in the payload coordinate system,
respectively. [Ms]'is the constraint moment applied
to the payload through the joint.

Constraint equations

According to Figure 1, the two objects are
connected to each other by a virtual link. At the
junction of this link to two bodies (Cs and Cg), the
constraint forces Fg and Fs and moments Mg and Ms
are applied to each of these objects. A total of six
equations of constraint are considered. These
equations that are dependent on the type of the joint
and degrees of the freedom of the system, are as
follows:

(7)Y =-F) =[], [F,] =]o]
(MY =—m,)Y =Dol, [se,e, V(7] =[o]

! i
d 7 d !
— —_ — = |0
[dr‘fﬁ} [d"t._\} [0]
! 1
d o | — d " ;t[(]]
dt dr

Investigating the stability of a dynamic model
Lyapunov linearization method is used to evaluate
the model stability. This method relates to the local
stability of a nonlinear system. Considering the
relation 7, by equating the derivatives of state
variables to zero and solving equations in the form
of (X, U)= 0, the equilibrium point (x: u«) is
obtained. Expanding the tailor series of the relation
7, we will have:

: () dff )
1=[i] l+["—] u+ 0 xu)
ox {2 i ) du vy o)

Omitting the aforementioned sentences fio: (X, u)
and defining Jacobi matrices, we have:

af "of
A=|=— B=|—
l dy ]| PR, [ du }1 iy

= x=Ax+ Bu

The eigenvalues of matrix A are as follows:
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0,0,0,-12.9430,-0.3560,—0.0006,
—-0.1508+8.1176i,-0.1013+ 2.43311,
—-0.7902+ 7.3144,—4.2142+ 4.1779i,
-0.1706 £ 0.6058,0,0

As can be seen, there are 5 eigenvalues of zero.
These eigenvalues are related to inertial
displacements and Euler's two yaw angles of the
parafoil and the payload. In fact, these eigenvalues
are related to state variables that their values has no
influence on the system dynamics. Regardless of
these eigenvalues, other eigenvalues are in the left
half side of the complex plane; therefore, this
nonlinear system is stable at equilibrium point.

{ - U
h
N
1
\ B ™
\.\ (2] ]
N\ Cs /
FB v /
b4 \\ /J

Ms v ~MB %

” o ‘ = driierary Link
\_\ CSE\—H FS
= |
\__/
Figure 1- The parafoil-payload system as a two-bodies
system

Figure 2- Schematic pattern of the parafoil-payload
system

Simulating the model

In order to validate the flight dynamics modeling,
the model is solved and simulated by the fifth-order
Runge Kutta integration method with a time
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constant of 0.01 seconds. The initial conditions of
the model are as follows:
ug=13.71m/s, wo=251 m/s, z, =1000 m
6, =—4294 deg. 6, =—0.0174 deg

It is worth noting that the other state variables are
considered zero at the initial moment.

Model response to symmetrical displacement of
the aerodynamic brake

In this condition, after a 5-second trim flight, the
input &; & with a delay time of one second, is
displaced in two different states for 30 seconds, and
then returns to the previous state (6s=0) with a delay
of one second. According to the figure 3, for 0,= 45,
the parafoil pitch angle reaches -8.29 degrees after
about two oscillations from the initial value of -4.29
degrees and returns to its original equilibrium value
by returning the input to zero value. For 6;= 90, 65,
after two oscillations and more dramatic changes
between -15/2 and 7/2 degrees, reaches -7/54, and
then returns to the original equilibrium value when
the input is zero. The payload also experiences pitch
angle fluctuations. When the input is given, 8; also
experiences a fluctuation between -14/4 to 16/2, but
then returns to its initial value when the input is zero.
As observed, with the rise of the displacement of the
input ds, pitch angle fluctuations increase in both
parafoil and payload. The figure 4 shows the height
changes according to the system range. By the rise
of &s , due to the reduction of the ratio L/D
(aerodynamic efficiency), the head angle is
increased, which reduces the forward distance and
also due to the reduction of the vertical component
of parafoil velocity, the rate of descent decreases;
figure 5 also displays parafoil angle of attack
changes.

With the displacement of J,, the angle of attack
aB, through some fluctuations, reaches 8/2 degrees
from the initial value of 10/39, and then returns to
its original equilibrium point when the input is zero.
With the rise of the input to 90 degrees, the
fluctuations of the angle of attack also increase and
finally return to the initial value after reaching the
value of 32.11 degrees. Normally, this input is
applied during landing and deceleration (flare flight
phase).

Journal of Aerospace Science and Technology / 7
Vol. 13/No. 1/ /Winter- Spring 2020

0y, (deg)

B (deg)

0 10 20 30 -'l‘ﬂ 50 60 70
Time (sec)
Figure 3 — Variation of the parafoil and payload roll
Euler angles in reponse to delts
Figure 4- Height changes in terms of range in respone
to delts
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Figure 5- Change in the parafoil angle of attack

Model response to asymmetric displacement of
aerodynamic brakes

In this state, after a 25-second trim flight, 8., with a
delay of a second, moves for two positions. Figure
6 shows the variations of the Euler roll and yaw of
the parafoil. When 8, equals 45 degrees, the roll
angle @B reaches the final value 16 from the initial
value zero. By increasing 8. to 90 degrees, the
parafoil rolling oscillation increases to 30.2 degrees;
also, the parafoil takes more direction angle and
changes direction to the right. In other words, in this
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situation, the parafoil skids more during the bypass
maneuver. Due to the lateral and longitudinal
dynamics, the lateral slip and parafoil angle of attack
change and deviate from their original value. The
figure 7 shows these changes. As observed, the
increase of 3, leads to the rise in the oscillations of
installation angles ag and Bg and in the 90-degree-
displacement position, they reach the final values of
0.5 degrees and 6.13 degrees, respectively. Figures
8 and 9 show three-dimensional path and lateral
distance changes in terms of range. As observed, the
increase in 3, displacement is followed by a decrease
in rotation radius during the maneuver and
consequently the rotation rate increases and the
system decreases the altitude at a higher rate.

Ti.l_n:c(,sec)
Figure 6- Changes in the parafoil Euler roll and yaw
angles in reponse to delta

Py, (deg)

ity (deg)

i i
10 20 3 40 50 60 70 80 90 100
Time (sec)

Figure 7- Changes in sideslip and parafoil angles of
attack in respose to delta

5 =457 I et -
a : H H

Height (m)

Cross Range (m)

Range (m)
Figure 8- The three-dimensional path of the system in
response to delta
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Figure 9- Changes of the lateral distance in terms of
range in response to delta

Model response to transverse displacement of
payload weight

Relative to parafoil

As mentioned in the introduction, transverse
displacement of the payload weight relative to the
parafoil can be used as an alternative to asymmetric
brake displacement. Figure 10 shows the temporal
variations of the transverse displacement of the ¢
joint due to two different UL inputs. In the relation
5, KL is considered 0/7. The figure 11 shows the
changes in lateral distance in terms of range in
response to these two inputs mentioned. As
observed, the system has done the S or 8 maneuver
in response to the inputs. The second entrance, in
which the transverse displacement changes in the
range of -0.25 to 0.25 m, has led to a maneuver with
a smaller turning radius and a higher rate. Figure 12
shows the Euler roll, parafoil pitch and yaw angle
shifts in response to these inputs. By moving the
joint to the right and disturbing the initial transverse
equilibrium, as well as restoring this equilibrium by
the parachute wing, a negative roll torque is created
in the parafoil, which leads to a negative Euler roll
angle (¢B) . By changing the direction of
displacement of the joint to the left, a positive roll
torque and a positive bank angle are created. As the
parafoil rolls and the aerodynamic forces deflect, the
pitch also changes so that it shifts. The joint to the
right becomes more negative and by changing the
direction of movement to the left, first by making a
positive and then negative oscillation, and finally by
zeroing the input, 8 returns to its original value of
the trim. Changes in the yaw angle are similar to the
roll angle, first negative and then positive.

In other words, by moving the joint to the right,
the system rotates to the left and vice versa. Also
according to the figure 12, by increasing the
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transverse displacement of the payload, the range of
response changes of the system also increases.

0.2

H T - um =
| aeadnne Input 1

i | = Input 2

016 -

01

0,06

] S

i

016 -
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025 = L ’
0 40 50 &0 ]
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Figure 10- Changes of the transverse displacement the

joint C relative to parafoil

10 2

100

Cross Range (m)

it ETTPREY Due to Input 1
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-350

i
0 50 100 150 200 250 300 350 400
Range (m)

Figure 11- Changes of the lateral distance displacement
in terms of range in response to two inputs of UL
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Figure 12- Changes of the parafoil Euler angles in
Response to two inputs of UL

Investigation of the effect of apparent mass and
moment of inertia

In this section, by applying input similar to Section
2-5 to the model, the following four conditions are
considered. Case 1: The real model consists of
apparent force and momentum and two centers of
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apparent mass. The second case: the model without
considering the apparent force and moment. Third
case: the model includes apparent force and
momentum, but assuming that the center of the
second apparent mass of M2 is in place of M1. Case
4: The model includes the apparent force and
momentum, but assuming that both apparent mass
centers are located at the location of the parafoil
mass center. Figure 13 shows the height changes in
terms of range and figure 14 shows the partial
magnification shown in the final phase for the 4
mentioned states.

As can be seen, in the second case the radius of
rotation is larger than in the first case, but the rate of
reduction of height is lower. The third case
(simplified model 1) is more in line with the real
model than the others. The fourth mode (simplified
model 2) also has a smaller turning radius than the
real model but is almost the same with the rate of
height reduction.

Figure 13- Height Changes in Terms of Range,
Apparent Mass Effect Investigation
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Effect Investigation

Investigation of effect of wind

In this section, two modes are considered. Case 1:
From the beginning, the system, without any input,
is exposed to the continuous model of Drayden
turbulent wind flow. The standard used in this model
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is MIL-F-8785C. The figure 15 shows Euler angles
time shifts. As can be seen, these angles fluctuate
around the range of their trim value. The figure 16
also shows the three-dimensional path for the two
cases: one considering the wind current, and the
other excluding it. The second case: The system,
after a 25-second flight without the wind current,
without any input, is exposed to wind from the rear
at a speed of 4 meters per second, with the elevation
and azimuth angles of 1 =—45 deg. and zero, which
then changes to u = 20 deg. after a flight to the 6oth
second. The figure 17 shows the parafoil Euler
angles shifts in this case. In the 25th second, only
the pitch angle fluctuates, which returns to its
original value after about 25 seconds. In the 60th
second when the system is exposed to lateral wind,
all three angles of position fluctuate and change due
to the coupling of the lateral and longitudinal
dynamics; the difference is that the roll and yaw
angles fluctuate more sharply than the pitch angle.
In this case, the heading angle of the system changes
and deviates to the right (east). The angles of attack
and sideslip of the parafoil also increase due to
changes in the translational velocity; figure 18
shows these changes.
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Figure 15- Changes of the parafoil Euler angles, Phase
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Figure 16- The three-dimensional path of the parafoil,
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Figure 19 shows the three-dimensional path of the
system in this case. According to the figure, first the
system increases the sideslip angle and then in the
60th second, by being exposed to the lateral wind
flow from the left, it changes direction to the right
(east). Due to the dynamic interaction between the
parafoil and the payload, the payload, the same as
the parafoil, changes position. Figure 20 shows the
time variations of the Euler's angles of the payload.
In the 60th second, all three angles oscillate; With
the difference that the start of the pitch angle
fluctuations at this moment is much less than in the
25th second. Due to the type of connection joint and
the absence of bounded directional momentum, the
Euler angle of the payload begins to increase at 60s.
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Figure 17- Changes of parafoil Euler angles, Phase 2
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Figure 18- Changes of parafoil sideslip and angle of
attack , Phase 2



Modeling of 9 Degrees of Parafoil Freedom through Transverse ..

1000 -
E m.
) e,
‘G 600 :
(1] ‘;0‘:-;___ N 3=l e, -/JU &0
T it Rl
e
Range (m) Cross Range (m)

Figure 19-The parafoil three-dimensional path, Phase 2

¥, (deg)

(deg)
|
|
- -
o
i
1
{
1
|
|
|
{

g\

w, (deg)

‘o0 W 20 30 40 50 60 T B0 0 W0
Time (sec)

Figure 20- Changes of payload Euler angles, Phase 2

Conclusion

This paper deals with multi-body modeling of a
dynamic model of 9 degrees of freedom of a
parafoil-payload system. Using Newton-Euler
method and developing the dynamic relations as
well as considering constraint equations, a set of
relations indicating the dynamic behavior of the
model was obtained. After review stability and the
effect of symmetric and asymmetric aerodynamic
brake inputs and transverse displacement of payload
weight with respect to parafoil, apparent mass and
moment of inertia and its places of application and
wind flow were investigated with. The following
results were obtained: 1. Symmetrical aerodynamic
brake input increases sideslip angle and decreases
descent rate, therefore, it can be used for smooth and
controlled descent. 2. The asymmetric aerodynamic
brake input, which is used to perform lateral
maneuvers, can be used to control the route and steer
to the desired destination. In this case, due to the
coupling, the longitudinal dynamics also changes.
3. Transverse displacement of the payload weight
relative to the parafoil changes the transverse
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installation angle of the parachute wing frame
relative to the parafoil, which can be considered as
an alternative to asymmetric braking for
maneuvering. 4. Places of apparent mass are located
at two separate points relative to the center of mass
of the parafoil, which must be considered for more
accurate modeling. 5. Wind flow, including sudden
and accidental winds, in addition to changing the
aerodynamics, changes the apparent moments and
forces, which will lead to a change in the behavior
of the system.
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