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In this paper, a method based on Chebyshev polynomials is developed for examination 

of geometrically nonlinear behavior of thin rectangular composite laminated plates under 

end-shortening strain. Different boundary conditions and lay-up configurations are 

investigated and classical laminated plate theory is used for developing the equilibrium 

equations. The equilibrium equations are solved directly by substituting the displacement 

fields with equivalent finite double Chebyshev polynomials. Using this method allows one 

to analyze the composite laminated plates with a combination of different boundary 

conditions on all edges. The final nonlinear system of equations is obtained by discretizing 

both equilibrium equations and boundary conditions with finite Chebyshev polynomials. 

Nonlinear terms created as the product of variables are linearized by using quadratic 

extrapolation technique to solve the system of equations. Since the number of equations is 

always more than the number of unknown parameters, the least squares technique is used 

to solve the system of equations. Some results for angle-ply and cross-ply composite plates 

with different boundary conditions are computed and compared with those available in the 

literature, wherever possible. 

Keywords:Post-buckling, Chebyshev polynomials, End-shortening, Composite plates, Least squares 
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Introduction12 

Composite structures are used in various 

engineering applications like aerospace, marine, 

automotive and so many others. The high strength 

and stiffness properties along with low weight, 

good corrosion resistance, enhanced fatigue life 

and low thermal expansion are the most well-

known characteristics of composite materials. 

Many researches have been conducted on beams, 

plates and shells with composite materials and also 

functionally graded materials. Due to the existence 

of in-plane compressive force, stability of such 

structures is one of the major issues that should be 

considered in design. In some cases, due to weight 

optimization, designers allow the structure to 

withstand loads greater than the buckling load. 

 
1. Professor (Corresponding Author) 

Therefore, the post-buckling analyses are also very 

important. 

Buckling and post-buckling behaviors of 

laminated composite plates were considered by 

many researches in the past. Turvey and Marshall 

[1] and Argyris and Tenek [2] presented excellent 

reviews on methods investigating buckling and 

post-buckling behaviors of structures. 

Ovesy et al. [3] presented a novel semi-energy 

finite strip method based on the first order shear 

deformation theory (FSDT) in order to examine 

the post-buckling solution for thin and relatively 

thick anti-symmetric angle-ply composite 

laminates subjected to uniform end-shortening. 

Komur et al. [4] carried out buckling analysis of a 

woven-glass-polyester laminated composite plate 

with a circular/elliptical hole, numerically. In the 
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analysis, finite element method (FEM) was applied 

to perform parametric studies on various plates. 

Dawe et al. [5] employed semi-analytical 

finite strip method (FSM) to investigate the post-

buckling behavior of composite structures under 

end-shortening. Wang and Dawe [6] developed a 

spline finite strip method on studying relatively 

thick composite plates using first order shear 

deformation plate theory (FSDT). Ovesy and his 

colleagues developed two versions of finite strip 

methods (semi-analytical and spline) based on the 

principle of minimum potential energy to predict 

nonlinear behavior of composite plates under end-

shortening and pressure loading [7]. Ghannadpour 

[8] developed an exact finite strip method to 

predict the buckling behavior of symmetrically 

laminated composite rectangular plates and 

prismatic plate structures. He also developed a full 

analytical finite strip method to calculate the 

relative post-buckling stiffness of I-section and 

box-section struts [9, 10]. Very high accuracy 

analyses on the post-buckling behavior of channel 

section and box-section struts are carried out by 

Ghannadpour et al. [11, 12]. In their analysis, the 

new strip was developed based on the concept that 

it being effectively a plate. Ovesy et al. [13, 14] 

carried out studies based on the buckling and post-

buckling analyses of moderately thick composite 

plates and plate structures using an exact finite 

strip. 

It is noted that in all the research on the use of 

finite strip method in the buckling and post-buckling 

analyses of the plates, only simply supported 

boundary conditions should be assumed at loaded 

ends of the plate, and this is a serious limitation. 

In other researches, Shen et al. [15-18] 

investigated the post-buckling analyses of 

composite and functionally graded plates under 

thermal and mechanical loads. These studies are 

mostly limited to the selection of simply supported 

boundary conditions on all edges of the plates. More 

recently, Ghannadpour and his colleagues [19-21] 

have investigated the post-buckling and progressive 

damage analyses of composite plates using semi-

analytical methods. Also, Ghannadpour et al. [22, 

23] have developed some new techniques to analyze 

the post-buckling and nonlinear behaviors of 

composite and functionally graded plates with 

different shapes of cutouts. 

However, in some methods like spectral 

methods [24, 25], the mathematical polynomials 

are used to estimate the displacement fields. These 

polynomials allow one to analyze the plates with a 

combination of different boundary conditions on 

all edges. Chebyshev polynomials are one 

category of these powerful mathematical 

polynomials with useful properties that can help to 

predict the plate behavior.  

For the first time, Alwar and Nath [26] used 

Chebyshev polynomials to solve equilibrium 

equations and obtain the nonlinear behavior of 

isotropic circular plates. He obtained the solution to 

the differential equation as a sum of the Chebyshev 

polynomials. Nath and Kumar [27] extended this 

method to the rectangular domain based on classical 

plate theory. In circular domain, univariateChebyshev 

polynomials could be used to solve equilibrium 

equations but for rectangular domain, bivariate 

Chebyshev polynomials are necessary. Shukla and 

Nath [28] have studied large deflection of moderately 

thick composite plates with different lay-up and 

various boundary conditions. Ghannadpour and 

Barekati [29] investigated initial imperfection effects 

on post-buckling response of laminated plates under 

end-shortening strain using Chebyshev techniques. 

In the present paper, post-buckling behavior of 

thin laminated composite plates subjected to uniform 

in-plane end-shortening strain, is analyzed using 

double Chebyshev polynomials series. The 

mathematical formulation is based on the classical 

laminated plate theory and the Von-Karman 

assumptions. The nonlinear equations are linearized 

by quadratic extrapolation technique and are solved 

iteratively. The boundary conditions consisting of 

clamped, simply supported and their combinations 

are considered. The effects of different boundary 

conditions and various lay-up configurations on post-

buckling response of rectangular plates are discussed 

extensively.  

Formulation 

Figure 1 shows a typical rectangular flat plate in an 

arbitrary coordinate. The plate is made out of 

laminated composite material. Classical laminated 

plate theory (CLPT) is used to form the 

equilibrium equations of plates. 

 

Figure 1. A typical rectangular flat plate 
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These equations are shown as [29] 
 

𝜕𝑁𝑥𝑥
𝜕𝑥

+
∂𝑁𝑥𝑦

∂y
= 0 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
∂𝑁𝑦𝑦

∂𝑦
= 0 

𝜕2𝑀𝑥𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
+Ν(𝑤0)

= 0 

(1) 

Where M and Nare the resultant forces and 

moments, respectively and Ν(𝑤0) is defined 

as[29]: 

Ν(𝑤0) =
𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤0
𝜕𝑥

+ 𝑁𝑥𝑦
𝜕𝑤0
𝜕𝑦

)

+
𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝜕𝑤0
𝜕𝑥

+ 𝑁𝑦𝑦
𝜕𝑤0
𝜕𝑦

) 

 

To solve the above equations, the displacement 

fields based on CLPT are defined as: 

𝑢̅(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) − 𝑧
𝜕𝑤(𝑥, 𝑦)

𝜕𝑥
 

𝑣̅(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) − 𝑧
𝜕𝑤(𝑥, 𝑦)

𝜕𝑦
 

𝑤̅(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) 

(2) 

Where 𝑢̅, 𝑣̅, 𝑎nd𝑤̅ are components of 

displacement in the x, y and z directions at a 

general point, respectively, whilst 𝑢, 𝑣, 𝑎𝑛𝑑 𝑤 are 

defined in the middle surface of the plates(z=0).  

The substitution of the displacement fields, 

Equation (2), in the Green’s expression for nonlinear 

strains with usual Von-Karman assumptions leads to 

the three strain components as[29]: 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

𝜕𝑣

𝜕𝑦
+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+ (

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
)}
 
 

 
 

+

𝑧

{
 
 

 
 −

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

−2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
 
 

 
 

  

(3) 

Where 𝜀𝑥 and𝜀𝑦 are axial strains and 𝛾𝑥𝑦is 

shear strain. 

With usual assumptions, the stress-strain 

relationship at a general point in CLPT 

formulations, for a laminated plate composed of 

bonded layers of unidirectional composite 

materials is given as: 
 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} (4) 

Where 𝑄̅𝑖𝑗(𝑖, 𝑗 = 1,2,6) are transformed reduced 

stiffness coefficients. 

By integrating the strain components in the 

thickness direction, the resultant forces and 

moments are obtained as: 

 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} 𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = ∫ 𝑧 {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} 𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 

(5) 

With regard to the presented equations, the relation 

between the resultant forces and moments and the 

strains and curvatures can be expressed as: 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

}

= [

𝐴11 𝐴12 𝐴16
𝐴21 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] {

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

}

+ [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑥𝑦
1

}{

𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦

}

= [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

}

+ [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑥𝑦
1

} 

(6) 

Where Ais called extensional stiffness matrix, 

Dis the bending stiffness matrix and Bis called the 

bending-extensional coupling stiffness matrix, 

which are defined in terms of the lamina 

stiffnesses𝑄̅𝑖𝑗
(𝑘)

 as[30]: 
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(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗)

= ∫ 𝑄̅𝑖𝑗(1, 𝑧, 𝑧
2

ℎ
2⁄

−ℎ
2⁄

) 𝑑𝑧 
(7) 

Using Equations (3) to (7) , the equilibrium 

equations can be expressed as: 

𝐴11 (
𝜕2𝑢

𝜕𝑥2
+ (

𝜕𝑤

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑥2
)) +

𝐴12 (
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ (

𝜕𝑤

𝜕𝑦
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)) −

𝐵11 (
𝜕3𝑤

𝜕𝑥3
) − 2𝐵16 (

𝜕3𝑤

𝜕𝑥2𝜕𝑦
) +

𝐴66 (
𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ (

𝜕𝑤

𝜕𝑦
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) +

(
𝜕𝑤

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑦2
)) − 𝐵16 (

𝜕3𝑤

𝜕𝑥2𝜕𝑦
) −

𝐵26 (
𝜕3𝑤

𝜕𝑦3
) = 0  

(8) 

𝐴12 (
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ (

𝜕𝑤

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)) +

𝐴22 (
𝜕2𝑣

𝜕𝑦2
+ (

𝜕𝑤

𝜕𝑦
) (

𝜕2𝑤

𝜕𝑦2
)) −

𝐵22 (
𝜕3𝑤

𝜕𝑦3
) − 2𝐵26 (

𝜕3𝑤

𝜕𝑥𝜕𝑦2
) +

𝐴66 (
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 

𝜕2𝑣

𝜕𝑥2
+ (

𝜕𝑤

𝜕𝑥
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) +

(
𝜕𝑤

𝜕𝑦
) (

𝜕2𝑤

𝜕𝑥2
)) − 𝐵16 (

𝜕3𝑤

𝜕𝑥3
) −

𝐵26 (
𝜕3𝑤

𝜕𝑥𝜕𝑦2
) = 0  

(9) 

𝐵11 (
𝜕3𝑢

𝜕𝑥3
+ (

𝜕𝑤

𝜕𝑥
) (

𝜕3𝑤

𝜕𝑥3
) +

(
𝜕2𝑤

𝜕𝑥2
) (

𝜕2𝑤

𝜕𝑥2
)) + 𝐵16 (

𝜕3𝑢

𝜕𝑥2𝜕𝑦
+

𝜕3𝑣

𝜕𝑥3
+ (

𝜕𝑤

𝜕𝑦
) (

𝜕3𝑤

𝜕𝑥3
) +

2 (
𝜕2𝑤

𝜕𝑥2
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) +

(
𝜕𝑤

𝜕𝑥
) (

𝜕3𝑤

𝜕𝑥2𝜕𝑦
)) + 2𝐵16 (

𝜕3𝑢

𝜕𝑥2𝜕𝑦
+

(
𝜕2𝑤

𝜕𝑥2
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) + (

𝜕𝑤

𝜕𝑥
) (

𝜕3𝑤

𝜕𝑥2𝜕𝑦
)) +

2𝐵26 (
𝜕3𝑣

𝜕𝑥𝜕𝑦2
+ (

𝜕2𝑤

𝜕𝑦2
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) +

(
𝜕𝑤

𝜕𝑦
) (

𝜕3𝑤

𝜕𝑥𝜕𝑦2
)) + 𝐵22 (

𝜕3𝑣

𝜕𝑦3
+

(
𝜕𝑤

𝜕𝑦
) (

𝜕3𝑤

𝜕𝑦3
) + (

𝜕2𝑤

𝜕𝑦2
) (

𝜕2𝑤

𝜕𝑦2
)) +

(10) 

𝐵26 (
𝜕3𝑣

𝜕𝑥𝜕𝑦2
+
𝜕3𝑢

𝜕𝑦3
+ (

𝜕𝑤

𝜕𝑥
) (

𝜕3𝑤

𝜕𝑦3
) +

2 (
𝜕2𝑤

𝜕𝑦2
) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) +

(
𝜕𝑤

𝜕𝑦
) (

𝜕3𝑤

𝜕𝑥𝜕𝑦2
)) − 𝐷11

𝜕4𝑤

𝜕𝑥4
−

𝐷22
𝜕4𝑤

𝜕𝑦4
− 2(𝐷12 +

2𝐷66)
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+Ν(𝑤0) = 0  

Method of Solution 

In order to model the nonlinear response of a 

plate under end-shortening, the displacement 

fieldsare estimated by finite 

Chebyshevpolynomials. These polynomials are 

one of the powerful mathematical series the 

properties of which are completely discussed in ref. 

[31]. To solve the equilibrium equations for 

composite plates with arbitrary boundary conditions, 

the equations must be discretized with these 

polynomials. This can be done through the following 

procedure. 

If function,𝜙(𝑥, 𝑦) is assumed to be a general 

function, it can be approximated by finite 

Chebyshev polynomials as: 

𝜙(𝑥, 𝑦) =∑∑ 𝛿𝑖𝑗𝜙𝑖𝑗
𝑇𝑖(𝑥)𝑇𝑗(𝑦)

𝑁

𝑗=0

𝑀

𝑖=0

 (11) 

Where 

𝛿𝑖𝑗 =

{
 
 

 
 
1

4
if 𝑖 and 𝑗 = 0

1

2
if 𝑖 or 𝑗 = 0

1     otherwise

 

 

The spatial derivatives of a general function 

𝜙(𝑥, 𝑦)can be expressed as: 

𝜙(𝑥, 𝑦)𝑥𝑟𝑦𝑠

=∑∑ 𝛿𝑖𝑗 (𝜙𝑖𝑗)
𝑟𝑠

𝑇𝑖(𝑥)𝑇𝑗(𝑦)

𝑁−𝑠

𝑗=0

𝑀−𝑟

𝑖=0

 
(12) 

Where, sis order of derivatives with respect to x 

and y respectively and the derivative 

function(𝜙𝑖𝑗)
𝑟𝑠

is evaluated using the recurrence 

Equation(13) as [29, 32]: 

(𝜙(𝑖−1)𝑗)
𝑟𝑠
= (𝜙(𝑖+1)𝑗)

𝑟𝑠

+ 2𝑖(𝜙𝑖𝑗)
(𝑟−1)𝑠

 
(13) 
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(𝜙𝑖(𝑗−1))
𝑟𝑠
= (𝜙𝑖(𝑗+1))

𝑟𝑠

+ 2𝑗(𝜙𝑖𝑗)
𝑟(𝑠−1)

 

Due to the product of variables, nonlinear 

terms appear in the governing equations at each 

step. To linearize the nonlinear terms, quadratic 

extrapolation technique is used at each step. A 

typical nonlinear term F at step k is expressed as: 

𝐹𝑘 =∑∑𝛿𝑖𝑗(𝜙𝑖𝑗)𝑘

𝑁

𝑗=0

𝑀

𝑖=0

𝑇𝑖(𝑥)𝑇𝑗(𝑦)

= (∑∑𝛿𝑖𝑗𝜙𝑖𝑗
𝑟

𝑁

𝑗=0

𝑀−𝑟

𝑖=0

𝑇𝑖(𝑥)𝑇𝑗(𝑦))

𝑘

× (∑∑𝛿𝑖𝑗𝜙𝑖𝑗
𝑠

𝑁−𝑠

𝑗=0

𝑀

𝑖=0

𝑇𝑖(𝑥)𝑇𝑗(𝑦))

𝑘

 

(14) 

Where 

(𝜙𝑖𝑗)𝑘 = 𝑡1(𝜙𝑖𝑗)𝑘−1 + 𝑡2(𝜙𝑖𝑗)𝑘−2
+ 𝑡3(𝜙𝑖𝑗)𝑘−3 

 

During the analysis, the coefficients𝑡1, 𝑡2 and𝑡3 of 

the extrapolation scheme of linearization take the 

following values: 

1,0,0 (𝑘 = 1) ;     2, −1,0 (𝑘
= 2) ;      3, −3,1 (𝑘
≥ 3) 

(15) 

and, from [29,33], it has been shown that the 

product of two bivariate Chebyshev polynomials is 

equal to: 

𝑇𝑖(𝑥)𝑇𝑗(𝑦)𝑇𝑘(𝑥)𝑇𝑙(𝑦)

= (1 4⁄ )[𝑇𝑖+𝑘(𝑥)𝑇𝑗+𝑙(𝑦)

+ 𝑇𝑖+𝑘(𝑥)𝑇𝑗−𝑙(𝑦) + 𝑇𝑖−𝑘(𝑥)𝑇𝑗+𝑙(𝑦)

+ 𝑇𝑖−𝑘(𝑥)𝑇𝑗−1(𝑦)] 

(16) 

With regard to the above described procedure, the 

displacement fields could be defined by Equation 

(11)as:  

𝑢(𝑥, 𝑦)

= −𝜀𝑥 +∑∑𝛿𝑖𝑗𝑢𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦)

𝑁

𝑗=0

𝑀

𝑖=0

 
(17) 

𝑣(𝑥, 𝑦)

= 𝛼𝜀𝑦 +∑∑𝛿𝑖𝑗𝑣𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦)

𝑁

𝑗=0

𝑀

𝑖=0

 
(18) 

𝑤(𝑥, 𝑦) =∑∑𝛿𝑖𝑗𝑤𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦)

𝑁

𝑗=0

𝑀

𝑖=0

 (19) 

Where𝑢𝑖𝑗, 𝑣𝑖𝑗 and 𝑤𝑖𝑗 are the unknown 

Chebyshev polynomial coefficients that should 

be found, 𝜀 is the applied end-shortening strain 

and 𝛼 is a constant. The term 𝛼𝜀𝑦 can show 

precisely the response of flat unbuckled plate to 

uniform end compression so that a trivial 

primary equilibrium path is invoked without 

involving any unprescribed degrees of freedom. 

In other words, constant 𝛼 is a symbol of 

Poisson’s effect, if unloaded edges are 

completely restricted from expansion 𝛼 =  0, 

and if the plate ends are allowed free to expand 

laterally; then,𝛼 =  𝜈 for isotropic plates and 

𝛼 =  𝐴12/𝐴22 for laminated composite plates. 

Using Equations (12) to (16) and substituting 

the displacement fields into Equations (8) to 

(10), the nonlinear differential equations are 

linearized and discretized. Therefore, all of 

equilibrium equations and also boundary 

conditions are obtained in terms of the 

unknown Chebyshev polynomial coefficients. 

After rearranging the system of equations, it can be 

observed that the total number of equations is more 

than the required coefficients. To obtain a unique 

solution, the least squares technique is used. In the 

present study, in order to obtain the accurate 

results, the convergence criterion is defined based 

on the vector containing the unknown Chebyshev 

polynomial coefficients (𝑑𝑖). The iterative 

procedure is repeated until it is satisfied by: 

√∑∆𝑑𝑖
2 ∑𝑑𝑖+1

2⁄ < 𝑒𝑟𝑟𝑜𝑟 (20) 

Once the global equilibrium equations are 

solved and the unknown Chebyshev polynomial 

coefficients are found for a particular prescribed 

end-shortening, it is possible to calculate the 

displacements at any point in the plate using 

Equations (17) to (19) and to determine force and 

moment quantities through use of Equation (6). In 
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particular, the average longitudinal force 𝑁𝑎𝑣is 

determined by considering the membrane stress 

resultant 𝑁𝑥𝑥and integrating it over the plate to 

give the longitudinal force acting on a plate: 

𝑁𝑎𝑣

=
∫ ∫ 𝑁𝑥𝑥(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝑏

−𝑏

𝑎

−𝑎

2𝑎
 

(21) 

Results and Discussion 

This section presents a number of numerical 

examples showing the excellent performance of 

the proposed algorithm, which was implemented 

in a MATLAB 2012b computer program. It is 

noted that the program is run on a standard core i5 

3.1GHz PC. The results of the developed current 

analysis are compared with some other results 

which are obtained from FEM analyses carried out 

by the authors and FSM analysis mentioned in 

references. It was observed that the solution time 

in the presented method is about 10 percent less 

than those obtained by the finite element method. 

In order to verify the proposed method, some 

representative plates with various boundary 

conditions are considered. It is worth nothing that 

the error mentioned in convergence criterion 

(equation (20)), is taken to be5 × 10−4 for all 

examples. 

To establish the accuracy and stability of 

the method, the convergence study is performed 

for a square isotropic plate. The Poisson’s ratio 

of the plate material is taken to be 𝜈 =  1/3, 

and 2𝑎/ℎ =  120. The plate is simply 

supported for out-of-plane behavior on all 

edges. In the plane of the plate, lateral 

expansion of the loaded ends is allowed. 

Furthermore, the unloaded edges are free to 

have lateral expansion. Convergence study for 

this case is shown in Figure 2. The given 

percentage error in figure is with respect to the 

solution corresponding to use of 13 Chebyshev 

polynomials in both directions x and y (i.e. 

M+1=N+1=13). In Figure 2, it is also seen that 

for all the examples under consideration the 

convergence studies with regard to the number 

of terms have revealed that 11 terms are 

sufficient to obtain converged results. 

However, the number of 13 terms is used to 

ensure accurate convergence in all analyses. 

 

Figure 2. Convergence study with regard to the 

number of Chebyshev polynomials 

As mentioned before, some results presented 

in this study have been validated by results 

obtained by FEM. The FEM analyses have been 

carried out using general purpose ABAQUS 

software and by using three dimensional shell 

element S4R.After performing convergence study, 

it is found that a mesh arrangement composed of 

400 square elements with uniform size is required 

to obtain the accurate results. 

Isotropic plates 

In order to validate the proposed technique, 

isotropic plates with different boundary conditions 

are studied at first. Comparison is made with 

available results. Five different cases are studied as 

detailed in Table 1 with regard to the assumed 

conditions at their edges. To define the straight 

boundary condition, it is necessary to divide the 

displacement field 𝑣into𝑣0 and 𝑣1, as𝑣0includes 

the terms invariant with respect to x and 

 𝑣1includes the other terms. 

Table 1. End and edge conditions for five isotropic 

square plates 

Case 

In-plane displacement 

conditions 

Out of plane 

displacement 

conditions 

Loaded 

ends 

Unloaded 

edges 

Loaded 

ends 

Unloaded 

edges 

1 Free Straight S S 

2 Free Free S S 

3 Free Straight S C 

4 Held Free S S 

5 Held Held S S 

For the out-of-plane conditions, S and C 

denote simply supported and clamped ends or 

edges, respectively. For in-plane displacement 

conditions at loaded ends, Free and Held denote 
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whether the ends are free to expand laterally or 

held against the expansion. At unloaded edges, 

Free denotes that the edges are free to move 

laterally, i.e. are free to wave, Straight means that 

the edges can move laterally but remain straight 

and Held denotes that the edges are restricted 

from any lateral movement. Therefore, the 

mathematical models for the boundary conditions 

mentioned in Table 1 can be expressed as outlined 

in Table2. 

Table2:Themathematicalmodelsforboundarycondition

s of isotropicplates 

 
In-plane displacement 

conditions 

Out of plane displacement 

conditions 

Case 𝑥 = ±𝑎 𝑦 = ±𝑏 𝑥 = ±𝑎 𝑦 = ±𝑏 

1 

𝑢 = ∓𝜀 

𝑁𝑥𝑦 = 0 

 

𝑣1

= ∫ 𝑁𝑦𝑦d𝑥
𝑎

−𝑎

= 𝑁𝑥𝑦 = 0 

𝑤
= 𝑀𝑥𝑥

= 0 

𝑤 = 𝑀𝑦𝑦 = 0 

2 

𝑢 = ∓𝜀 

𝑁𝑥𝑦 = 0 

 

𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0 
𝑤
= 𝑀𝑥𝑥

= 0 

𝑤 = 𝑀𝑦𝑦 = 0 

3 

𝑢 = ∓𝜀 

𝑁𝑥𝑦 = 0 

 

𝑣1

= ∫ 𝑁𝑦𝑦d𝑥
𝑎

−𝑎

= 𝑁𝑥𝑦 = 0 

𝑤
= 𝑀𝑥𝑥

= 0 

𝑤 =
∂𝑤

∂𝑦
= 0 

4 

𝑢 = ∓𝜀 

𝑣 = 0 

 

𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0 
𝑤
= 𝑀𝑥𝑥

= 0 

𝑤 = 𝑀𝑦𝑦 = 0 

5 
𝑢 = ∓𝜀 

𝑣 = 0 
𝑣 = 𝑁𝑥𝑦 = 0 

𝑤
= 𝑀𝑥𝑥

= 0 

𝑤 = 𝑀𝑦𝑦 = 0 

Where u,v, and ware the displacement fields. 

To obtain the results, the Poisson’s ratio 𝑣 is 

assumedto be 1/3 and ratio of length to 

thickness 2𝑎/ℎ =  120. In presenting the results, 

the non-dimensional load is used as𝐹 = 2𝑁𝑎𝑣𝑎/
𝜋2𝐸ℎ3. 

Results for the five different cases are 

shown graphically in Figure 3, giving the non-

dimensional load-end shortening variation, and 

in Figure 4, giving the non-dimensional load-

maximum deflection variation. The values of 

𝜀𝑐𝑟(i.e. the end shortening strain at bifurcation 

point) are (0.2570, 0.2570, 0.4942, 0.2375, and 

0.1713) ×10-3 for Cases 1 to 5, respectively. 

 

Figure 3.Longitudinal force-

endshorteningbehaviorforfiveisotropicplates 

 

Figure 4.Longitudinal force-

maximumdeflectionbehaviorforfiveisotropicplates 

Laminated plates with simply supported ends 

Anti-symmetric cross-ply 

The square plates with 2𝑎 ℎ⁄ = 100 and simply 

supported boundary condition on all edges are 

considered in this section. These plates have anti-

symmetric cross-ply lay-up configuration as 

[0/90]2n. The layers have equal thicknesses with 

material properties as: 

𝐸1 𝐸2⁄ = 40 ;  𝐺12 𝐸2⁄ = 0.5 ; 𝜐12 = 0.25 

As mentioned before, all edges of the plates are 

simply-supported and the loaded ends are free to 

expand laterally in their plane. Therefore, the 

boundary conditions are defined as: 

𝑥 = ±𝑎;  𝑢 = ∓𝜀;𝑤 = 𝑀𝑥 = 𝑁𝑥𝑦
= 0 ;  

𝑦 = ±𝑏;𝑤 = 𝑀𝑦 = 𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0 ;  
(22) 

The dimensionless graphical form of results are 

presented in Figures 5 and 6. The Load factor 

used in these examples is defined as𝐹 = 𝑁𝑎𝑣𝑎/
50𝐸2ℎ

3. 
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The results obtained from the present method are 

compared with those computed by semi-analytical 

finite strip method [34]. As can be seen in Figures 

5 and 6, there is an excellent agreement between 

the results. 
 

 

Figure 5. Longitudinal force-

endshorteningbehaviorfor anti-symmetriccross-

plylaminates (𝟐𝒂 𝒉⁄ = 𝟏𝟎𝟎) 

 

Figure 6. Longitudinal force–maximum deflection 

behavior for anti-symmetric cross-ply laminates 

(2𝑎 ℎ⁄ = 100) 

It is seen that due to the presence of 𝐵11 and 𝐵22 

(𝐵11 = -𝐵22), the in-plane load causes the out of 

plane deflection. Hence, the bifurcation behavior 

will not occur since the out-of-plane displacement 

will take place from the onset of the application of 

end-shortening strain. It is also seen in figures that 

the increase in the number of layers significantly 

affects the behavior of a laminate. That is to say, a 

laminate with infinite number of layers, i.e. 𝐵𝑖𝑗 =

0, demonstrates distinctive pre-buckling and post-

buckling behaviors. This is while it is difficult to 

pinpoint a buckling load when there is a definite 

number of layers. 

Anti-symmetric angle-ply 

In this section, anti-symmetric angle-ply laminated 

plates[±30]2𝑛with 2𝑎 ℎ⁄ = 100 are considered. All 

the layers have equal thicknesses. Each lamina 

consists of composite material with the same 

material properties like in the previous section. 

The plate boundaries are simply-supported, the 

loaded ends are not allowed to expand laterally and 

the unloaded edges are restrained against lateral 

expansion so that the boundary conditions can be 

defined as: 

𝑥 = ±𝑎 ;  𝑢 = ∓𝜀;𝑤 = 𝑀𝑥 = 𝑣 =

0 ; 𝑦 = ±𝑏 ;  𝑣 = 𝑤 = 𝑀𝑦 = 𝑁𝑥𝑦 = 0 ;   
(23) 

The history of the load-end shortening strain 

and load-deflection are shown in Figures 7 and 8, 

where the load factor is defined as same as section 

4.2.1, and wc is maximum deflection that occurs in 

the center of plates. The results obtained by the 

present method are compared with FSM results 

presented in[5].As can be seen in Figures 7 and 8, 

there is an excellent agreement between the 

results. It can be seen inFigure 7 that the number 

of layers has a significant effect on the buckling 

load level but the post-buckling behavior of the 

various angle-ply laminates remains the same. 

 

Figure 7.Longitudinal force -

endshorteningbehaviorforlaminateswith[±30]2𝑛(

2𝑎 ℎ⁄ = 100) 
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Figure 8. Longitudinal force –maximumde 

flectionbehaviorf or laminates with [±30]2𝑛(2𝑎 ℎ⁄ = 100) 

As can be seen in Figures 7 and 8, the 

bifurcational behavior does occur when the anti-

symmetric angle ply laminates are subjected to 

end-shortening. This happens even with the 

existence of the non-zero coupling coefficients 

𝐵16 and 𝐵26 terms. Thus, the laminate remains 

flat under progressive end-shortening with 

uniform in-plane stiffness until the critical 

value. 

Laminated plates with clamped ends 

Three square plates (A, B, C) with clamped 

loaded ends and different boundary conditions 

along the unloaded edges are considered in this 

section. Loaded ends and unloaded edges are 

free to expand laterally in their plane. Lay-up 

configurations for these plates are unsymmetric 

cross-ply [0/90]2and the length to thickness 

ratio is 100. The material properties are assumed 

to be: 

𝐸1 𝐸2⁄ = 14 ;  𝐺12 𝐸2⁄ =   0.5 ; 𝜐12 = 0.3 

Plate A has simply supported boundary 

condition along unloaded edges. Therefore, the 

boundary conditions for plate Aare defined as: 

𝑥 = ±𝑎;  𝑢 = ∓𝜀;𝑤 =
∂𝑤

∂𝑥
= 𝑁𝑥𝑦 = 0 

𝑦 = ±b;  𝑤 = 𝑀𝑦𝑦 = 𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0 

(24) 

The out-of-plane deflection of plate A in both y 

and x directions is depicted in Figures 9 and 10 for 

a prescribed end-shortening strain 𝜀 = 0.001, 

respectively. As it can be seen, these figures also 

show the effect of increasing terms in the assumed 

displacement fields. 

 

 

Figure 9. Out-of-planede flection shape for plate A 

alongy direction 

 

Figure 10.Out-of-planede flection shape for plate A 

alongx direction 

As mentioned before, the in-plane displacement 

conditions for three plates are the same. However, 

the out-of-plane boundary conditions are quite 

different. Plate B has two clamped unloaded edges 

while the clamped condition is on one edge of plate 

C. The mathematical modeling of out-of-plane 

boundary conditions for the two plates, B and C, is 

demonstrated below: 

Plate B  

𝑤|𝑥=±𝑎 = 𝑤|𝑦=±𝑏 = 0 
∂𝑤

∂𝑥
|
𝑥=±𝑎

=
∂𝑤

∂𝑦
|
𝑦=±𝑏

= 0 
(25) 

Plate C  

𝑤|𝑥=±𝑎 = 𝑤|𝑦=±𝑏 = 0 
∂𝑤

∂𝑥
|
𝑥=±𝑎

=
∂𝑤

∂𝑦
|
𝑦=+𝑏

= 𝑀𝑦|𝑦=−𝑏

= 0 

(26) 

 

The results are presented in terms of 

dimensionless displacements and longitudinal load 

in Figures 11 to 12.It may be observed from these 
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figures that the unsymmetrical cross ply plates 

with clamped boundary conditions on loaded ends 

have remained flat up to the buckling load and 

hence, a bifurcation point has occurred. As 

previously mentioned, the FEM analysis has been 

carried out using general purpose ABAQUS 

software. The three dimensional shell element 

(S4R) of the ABAQUS library has been used by a 

mesh arrangement composed of 400 square 

elements with uniform size. The results in Figures 

11and 12 are compared with those obtained by 

FEM.As can be seen in the figures, there is an 

excellent agreement between the results. 

 

Figure 11.Effect of unloaded boundary conditions on the 

post-buckling behavior of unsymmetric cross-ply [0/90]2 

 

Figure 12.Post-buckling behavior of unsymmetric cross-

ply [0/90]2 plates with different boundary conditions 

It is also worth mentioning that plate C is 

much more flexible than plate A due to its out-of-

plane boundary conditions at unloaded edges. 

Therefore, as it can be seen inFigure 11, it loses 

more stiffness in the post-buckling regime 

compared with two other plates. 
Such behavior can also be seen in the 

following figures. The out-of-plane deflection 

shapes for three plates, A, B and C, are depicted in 

Figure 13 at end-shortening strain ε = 0.001. As it 

can be seen, the plate with more clamped 

boundaries has a lower out-of-plane deflection. 

 

Figure 13. Non-dimensional deflection of three plates 

A, B and C 

 

Figure 14.Lateral displacement variations(v) forthree 

plates A, B and C 

In order to investigate the lateral displacement 

behavior of laminated plates in post-buckling 

regimes, the figure shows the variation of v for three 

plates A, B and C. This figure also illustrates the 

influence of different boundary conditions on the 

variation of lateral displacement v. It can be seen that 

the non-symmetric boundary conditions create non-

symmetric variation for lateral displacement on 

unloaded edges. 

Summary 

A method based on Chebyshev polynomials was 

developed for the examination of geometrically 
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nonlinear behavior of thin rectangular composite 

laminated platesunder end-shortening strain in this 

study. The equilibrium equations were solved 

directly by substituting the displacement fields 

with equivalent finite double Chebyshev 

polynomials. The final nonlinear system of 

equations was obtained by discretizing both 

equilibrium equations and boundary conditions 

with finite Chebyshev polynomials. Nonlinear terms 

created as the product of variables were linearized by 

using quadratic extrapolation technique to solve the 

system of equations. Since the number of equations 

was always more than the number of unknown 

parameters, the least squares technique was used to 

solve the system of equations. The presented 

formulations, allow one to analyze the composite 

laminated plates with a combination of different 

boundary conditions on all edges. 
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