Aerospace Science and Technology
Mahsa Azadmanesh; Jafar Roshanian; Mostafa Hassanalian
Abstract
This paper employs the fast terminal sliding mode control with the sign and the saturation function to track the landing trajectory of a probe on an asteroid and to further improve the dynamic tracking performance. Then the controller is enhanced by adding the fuzzy control to both fast terminals. To ...
Read More
This paper employs the fast terminal sliding mode control with the sign and the saturation function to track the landing trajectory of a probe on an asteroid and to further improve the dynamic tracking performance. Then the controller is enhanced by adding the fuzzy control to both fast terminals. To make fair judgments on the performance of the suggested method, the proportional derivative sliding mode control with both the sign function and the saturation function is simulated as well. The two-point barycentric gravitational model is used to describe the weak gravity around the asteroid. The proposed fuzzy fast terminal method raises the convergence speed, improves the desired trajectory tracking accuracy and ensures that the system modes are placed on the sliding surface in a short, limited time. The absolute errors for the proportional derivative sliding mode controller, fast terminal sliding mode controller and improved fast terminal sliding mode controller are about 244, 139 and 113. The trajectories along all three coordinate axes in the proportional derivative sliding mode controller, fast terminal sliding mode controller and improved fast terminal sliding mode controller were tracked in 8 seconds, 5 seconds and 4 seconds. The results show how the fuzzy-fast terminal sliding mode control with the saturation function is the better choice of controller and how the fuzzy system is able to adapt to the momentary fluctuations and cover them successfully.
Aerospace Science and Technology
Amir Akbari; Hossein Khaleghi
Abstract
The use of unshrouded turbine rotor blades can considerably reduce the weight of an aero engine. However, in an unshrouded high-pressure turbine, the tip leakage flow generates about 30% of the turbine total loss. Another factor which affects the loss in axial-flow turbines, is the axial distance between ...
Read More
The use of unshrouded turbine rotor blades can considerably reduce the weight of an aero engine. However, in an unshrouded high-pressure turbine, the tip leakage flow generates about 30% of the turbine total loss. Another factor which affects the loss in axial-flow turbines, is the axial distance between the rotor and stator. The purpose of the current work is to investigate the impacts of the blade tip clearance and the axial distance between rotor and stator on the performance of a high-pressure axial turbine, by using three-dimensional numerical simulations. Comparing the numerical results to the experimental data shows that the numerical simulations can predict the turbine performance fairly accurately. Results reveal that increasing the tip clearance and the axial distance between the rotor and stator reduce the turbine efficiency. The effects of tip clearance and rotor-stator axial distance on the performance and endwall flow field of the studied turbine stage have been presented and discussed.
Aerospace Science and Technology
Shayan Dehkhoda; Mohammad-Ali Amiri Atashgah
Abstract
This paper is dedicated to the optimal path-planning of a quadrotor to deliver the goods in the form of a round-trip mission. At first, quadrotor modeling is performed by the Newton-Euler method and then the problem is formulated as an optimal control effort problem. Then, by discretization of the equations ...
Read More
This paper is dedicated to the optimal path-planning of a quadrotor to deliver the goods in the form of a round-trip mission. At first, quadrotor modeling is performed by the Newton-Euler method and then the problem is formulated as an optimal control effort problem. Then, by discretization of the equations using the direct colocation method, the problem becomes a nonlinear programming system that can be solved by available optimization methods. This discretization helps to make the derivative values in the equations of motion as simple algebraic expressions and the path optimization problem becomes a standard form of nonlinear programming problem (NLP). In this method, instead of obtaining state and control functions, state and control values are obtained at the beginning and endpoints of smaller time intervals. This method is one of the most explicit methods for the numerical solution of differential equations. It should be noted that in this research, safe areas around urban obstacles are considered fixed cylinders. Extensive simulations are evidence of the usefulness of this method, while the vehicle realizes all geometric, dynamic, and kinematic constraints.
Aerospace Science and Technology
Morteza Sharafi; Mahdi Jafari; mojtaba alavipour
Abstract
In this paper, optimal guidance law design considering fixed final state and time for the final phase a spacecraft or launch vehicle is investigated and studied. This guidance law, not only satisfied a specific optimality criterion, but it also has the least sensitivity to the initial state’s deviations; ...
Read More
In this paper, optimal guidance law design considering fixed final state and time for the final phase a spacecraft or launch vehicle is investigated and studied. This guidance law, not only satisfied a specific optimality criterion, but it also has the least sensitivity to the initial state’s deviations; which is due to the inclusion of the nonlinear terms in the mathematical modeling using the high order expansions method. The main goal of this research, is to investigate the development and to augment the capability of the high order expansions method for guidance law design. Different implementations of this approach including the differential algebra high order, the generating function based high order and vectorized high order expansions methods have been investigated. After reviewing the implementation concepts of the high order expansions method, the effectiveness of this method has been studied. Then a 3-dimensional injection of a satellite problem has been chosen as the case study and after extracting the mathematical model and nominal optimal solution, the sensitivity variables have been extracted up to the 3rd order. Afterwards, to investigate the performance of the designed guidance law, the Monte Carlo simulations have been performed and it has been shown that the designed guidance law on the basis of the Taylor series and high order expansions method has a good accuracy and is a valuable alterative to the nominal trajectory tracking guidance approach.
Aerospace Science and Technology
Alireza Ekrami Kivaj; Alireza Novinzadeh; farshad pazooki; Ali Mahmoodi
Abstract
This study aims to investigate the spacecraft returning from the atmosphere. Due to high speed, prolonged flight duration, and numerical sensitivity, returning from the atmosphere is regarded as one of the more challenging tasks in route design. Our suborbital system is subjected to a substantial thermal ...
Read More
This study aims to investigate the spacecraft returning from the atmosphere. Due to high speed, prolonged flight duration, and numerical sensitivity, returning from the atmosphere is regarded as one of the more challenging tasks in route design. Our suborbital system is subjected to a substantial thermal load as a result of its return at high speed and the presence of uncertainty. In addition, the current study aims to lessen the thermal load in the system to meet the needs of the initial and final conditions through multi-subject optimization, comparison of the two fields of aerodynamics and flight dynamics, assistance from optimal control theory, and consideration of uncertainties The heat load in the sub-orbital system could be reduced by around 9.6% using these algorithms and optimum control theory. Artificial bee colonies, genetic algorithms, and the combined genetic algorithms and particle swarm algorithms were utilized as exploratory optimization techniques. The objective of the flight mechanics system is also to create the best trajectory while taking into account uncertainty and minimizing thermal load. The conduction law based on heat reduction is described in the search for the ideal trajectory. We reduced the heat rate during the first part of the spacecraft's return journey from the atmosphere by concentrating on the angle of attack. By more accurately specifying the angle of attack and the angle of the bank in the second stage of the split guidance legislation, the ultimate return requirements could be achieved significantly .
Aerospace Science and Technology
Sayed Hossein Moravej Barzani; Mahdi Mortazavi; Hossein Shahverdi
Abstract
In this paper, the effects caused by the combination of folding angles simultaneously with changing the stiffness ratio of different parts of a folding wing are investigated. The geometrically exact fully intrinsic equations are employed to simulated the wing nonlinear dynamic behavior. The important ...
Read More
In this paper, the effects caused by the combination of folding angles simultaneously with changing the stiffness ratio of different parts of a folding wing are investigated. The geometrically exact fully intrinsic equations are employed to simulated the wing nonlinear dynamic behavior. The important advantages of these geometrically exact equations can be seen as complete modeling without simplifying assumptions in large deformations, low-order nonlinearities, and thus less complexity. In this research, folding angles have been used in the geometrically exact fully intrinsic beam equations and the combination of different folding angles is studied. The applied aerodynamic loads in an incompressible flow regime are determined employing Peter’s unsteady aerodynamic model. In order to check the stability of the system, first the resulting non-linear partial differential equations are discretized, and then linearized about the nonlinear steady-state condition. By obtaining the eigenvalues of the linearized system, the stability of the wing is evaluated. Furthermore, investigation of the effects of the stiffness on the flutter speed and frequency of the folding wing for various folding angles, is another achievement of this study. It is observed that the combination of folding angles can significantly delay the flutter speed and improve the performance of the bird.