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Active Vibration Suppression of a Nonlinear Flexible Spacecraft 

(Ti), and piezoelectric patches (Tp) can be written 
as [20]: ܶ = ଵଶ ߱ ௛ ܫ்߱ + ∑ ௜ܶ + ∑ ௣ܶ௜௡೛௜ୀଵே௜ୀଵ ,  (1) ௜ܶ = ଵଶ ׬ ௕௜ߩ ௜்ܸ ௜ܸ ௟଴ݔ݀  = ׬ ܾ)௕௜ߩ +௟଴ݔ)ଶ ߠሶ ଶ + 2(ܾ + ሶݕሶߠ(ݔ + ሶݕ ଶ + ሶߠଶݕ ଶ݀ݔ  

(2) ௣ܶ௜ = ଵଶ ׬ ௣௜ߩ ௜்ܸ ௜ܸ ௛೔ା௫೔௫೔ݔ݀    

(3) 
Where Ih, ω, andVi are the hub inertia 

moment, spacecraft angular velocity, and the 
panel velocity, respectively. ρpi, xi, and hi are the 
mass per unit length, starting x-coordinate and 
length of  ith PZT patch, respectively.  
To model the vibration of the flexible 
appendages, the assumed modes formulation is 
used. The panel deflection along the body axis is 
written as: ݓ௜ = ,ݕ)௜ݓ (ݐ = ∑ ௡௜ୀଵ(ݕ)௜߮(ݐ)௜ݍ = ߮௜ݍ௜  

(4) 
n is the number of assumed modes. qi and φi are 
the modal coordinates and the panel shape 
functions, respectively. The mode shape functions 
of the clamped-free beams, φs(y), can be written 
as: ߮௦(ݕ) = ቄቂcosh(ߣ௦ ௬௟ ) − cos(ߣ௦ ௬௟ )ቃ ௦ߪ− ቂsinh(ߣ௦ ௬௟ ) − sin(ߣ௦ ௬௟ )ቃቅ  

(5)

௦ߪ = ௦௜௡௛( ఒೞ)ି௦௜௡(ఒೞ)௖௢௦௛( ఒೞ)ା௖௢௦(ఒೞ)  (6)

Where λs is root of the following equation: ܿݏ݋ℎ( (௦ߣ + (௦ߣ)ݏ݋ܿ + 1 = 0  (7)
The potential energy of panel deformation is 
given as: ܲ = ∑ ׬ ே௜ୀଵݕ௜ᇱᇱଶ݀ݕ௜ܫ௜ܧ =∑ ா೔௧೔యଵଶ ׬ ே௜ୀଵݕ݀ ௜ݍ′′௜்߮௜′′்߮௜ݍ   

(8)

WheretiandEiare the thickness and elasticity 
modulus of the ith appendage, respectively.  
The one-dimensional electro-mechanical 
constitutive equation of a piezoelectric element 
by assuming uniaxial polarized and homogeneous 
layers can be written as: ൤ܦଷଵܵ ൨ = ቈ ଷ்ߝ ݀ଷଵ݀ଷଵ ଵܵଵா ቉ ൤ܧଷܶଵ ൨  

(9)

whereDi, Si, , Ei, Ti, dij and SE
ij represent the 

electric displacement along the ith axis, 

permittivity of the piezoelectric material, the 
electric filed density, piezoelectric charge, and 
elastic constants of the piezoelectric materials, 
respectively [10]. 
According to the fact that in the piezo material, 
the Young's modulus Ep, is the inverse of its 
elastic constant SE

11, equation (9) can be written 
as: ൤ܦଷଵܶ ൨ = ቈߝଷ் − ݀ଷଵܧ௣ ݀ଷଵܧ௣−݀ଷଵܧ௣ ௣ܧ ቉ ൤ܧଷଵܵ ൨  

(10)

The work done by the ith PZT patches is defined 
as an integral over the volume of the PZT patches 
such that: 

௣ܹ௜ = ଵଶ ׬ (− ௜ܶ ଵܵ௜ + ଷ௜)௏೔ܧଷ௜ܦ ௜ݒ݀ =ଵଶ ௣௜ݓ ׬ ׬ ൜ܦଷ௜௜ܶ ൠ ቂ1 00 −1ቃ ൜ܧଷ௜ଵܵ௜ ൠ௬೔ା௧೔௬೔௛೔ା௫೔௫೔   ݒ݀
(11)

where yiis the starting point of piezoelectric as 
measured from the neutral axis of the beam. vi 
and wpi are the electrode voltage and the width of 
the ith piezo patch, respectively. Using the 
Lagrange’s equation, we have: ൤ܬ + ݍሿܯሾ்ݍ ሾ ෤߮ሿሾ ෤߮ ሿ ሾܯሿ൨ ቈݍߠሷሷ ቉ +൤0 00 ሾܭሿ − ሶߠ ଶሾܯሿ൨ ൤ݍߠ൨ + ൤2 ߠሶ்ݍሾܯሿ0 ݍ ൨ =ቂ ߬−ሾܤሿݒቃ  (12)

ܬ = ௛ܫ + ׬ ܾ)௕ߩ + ௟଴ݔଶ݀(ݔ +∑ ׬ ܾ)௣೔ߩ + ௛೔ା௫೔௫೔௡೛௜ୀଵݔଶ݀(ݔ   
(13)

ሾܯሿ ׬= ௕ሼ߮ሽ்௟଴ߩ ሼ߮ሽ݀ݔ +∑ ׬ ௛೔ା௫೔௫೔௡೛௜ୀଵݔ௣೔ሼ߮ሽ்ሼ߮ሽ݀ߩ   

(14)

ሾ ෤߮ ሿ = ௟଴׬ ܾ)௕ߩ + ݔሼ߮ሽ݀(ݔ +∑ ׬ ܾ)௣೔ߩ + ௛೔ା௫೔௫೔௡೛௜ୀଵݔሼ߮ሽ݀(ݔ   
(15)

ሾܭሿ = ሾܭ௕ሿ + ௣௜൧ܭൣ ׬= ௕ሼ߮′′ሽ்௟଴ܫ௕ܧ ሼ߮′′ሽ݀ݔ + ௣ܧ௣௜ݐ௣௜ݓ ൬ݕ௜ଶ ௣௜ݐ௜ݕ+ + ௧೛೔మଷ ቁ ׬ ሼ߮′′ሽ்௛೔ା௫೔௫೔ ሼ߮′′ሽ݀ݔ  

(16)

ሼܤ௜ሽ =݀ଷଵܧ௣ݓ௣௜ ቀݕ௜ + ௧೛೔ଶ ቁ ׬ ሼ߮′′ሽ்௛೔ା௫೔௫೔   ݔ݀
(17)
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Active Control Strategies Applying 
Piezoelectric Patches 

The control system for the vibration reduction of the 
flexible spacecraft during attitude maneuvering 
consists of the two independent subsystems shown 
in Figure 2. The inner active controller can suppress 
the vibration and the outer spacecraft attitude 
controller guarantees the system stability and 
performance [19]. 

 

Figure 2. Block diagram of control system with 
piezoelectric 

Inner loop control strategy 

It is assumed that spacecraft orientation has no 
effect in the inner loop. For active vibration 
control of the flexible appendage, an LQR 
controller is designed using piezoelectric 
actuators and sensors.    Three piezo patches are 
used on the spacecraft panel: attached at the root, 
in the middle and at the end of the panel.  

The objective is designing inner loop optimal 
controller to dampen the panel vibration. By 
considering ߠሶ = ሷߠ ≅ 0, the elastic vibration 
dynamics become decoupled from the rigid body 
motion dynamics. By imposing this condition, 
equation (12) becomes: ሾܯሿݍሷ + ሾܭሿݍ = (18)  ݒ ܤ−

In this equation, by choosing the state vector ܺ = ൤ݍሶݍ൨, the state space equation can be expressed 

as: ሶܺ = ൤0 ܫܭଵିܯ− 0 ൨ ܺ + ቂ−0ܤ ቃ (19)  ݒ

In optimal control problem, the state feedback 
gain matrix K is designed in a manner that the 
quadratic integral criterion ܬ = ׬ ሾ்ܺܳܺ +ஶ଴்ܷܴܷሿ݀ݐ  is minimized. The weighting matrixes 
Q and R are positive definite matrixes that 
penalize certain states and control inputs of the 

system. The solution to this problem is provided 
by the following feedback control law: 
 ܷ = (ݐ)ܺܭ− = −ܴିଵ(20)  (ݐ)ܺ(ݐ)்ܲܤ

Where, P(t) is extracted by solving the following 
Riccati equation: ்ܲܣ + ܣܲ − ்ܲܤଵିܴܤܲ + ܳ = 0  (21)

By changing the weight of Q and R and selecting 
their best, K can be achieved optimally. 
Outer loop control strategy 

After vibration suppression compensator is 
designed, the second feedback loop is designed to 
guaranty the maneuver of the flexible spacecraft. 
The equations of motion for the flexible 
spacecraft without piezoelectric voltage are given 
in (22), with the same mass as described by 
equation (12): ൤ܬ + ݍሿܯሾ்ݍ ሾ ෤߮ሿሾ ෤߮ ሿ ሾܯሿ൨ ቈݍߠሷሷ ቉ +൤0 00 ሾܭሿ − ሶߠ ଶሾܯሿ൨ ൤ݍߠ൨ + ൤2 ߠሶ்ݍሾܯሿ0 ݍ ൨ =ቂ0߬ቃ  (22)

Two robust variable structure nonlinear 
controllers are designed as the outer loop: the 
high order-sliding mode, using super twisting 
algorithm and the nonsingular terminal sliding 
mode. For a better comparison of the 
performance of active and passive controllers, 
they are designed in a manner that the piezo 
actuators output is not involved. 

High Order Sliding Mode 
Controller, STA 

The objective is to control the attitude angle and 
panel deflection of the flexible spacecraft. The 
Euler angle ϴ represents the spacecraft angular 
attitude obtained from the body frame respected 
to the inertial frame: 

In this section, using Super Twisting 
Algorithm (STA), a robust controller is designed 
for the flexible spacecraft. The tracking of the 
attitude angles ϴ to the command trajectory ϴd  
and damping panel deflection are the main 
objective.  

Using the state vector ܺ = ሾݔଵ ଶሿݔ = ሾߠ  ሿݍ
and (22), the state-space equation of the flexible 
spacecraft model can be obtained as: 
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൜ ሶଵݔ = ଶሶݔଵݔ = ݂(ܺ) + ݑ(ܺ)݃ + (ܺ)݂ (23)  (ݐ)݀ =൤ܬ + ݍሿܯሾ்ݍ ሾ ෤߮ሿሾ ෤߮ ሿ ሾܯሿ൨ିଵ ൬൤0 00 ሾܭሿ − ሶߠ ଶሾܯሿ൨ ൤ݍߠ൨ +൤2 ߠሶ்ݍሾܯሿ0 ݍ ൨൰  (24) 

݃(ܺ) = ൤ܬ + ݍሿܯሾ்ݍ ሾ ෤߮ሿሾ ෤߮ ሿ ሾܯሿ൨ିଵ ቂ10ቃ  
(25) 

Where, d(t) is the disturbance vector. The 
functions f(X) and g(X) are not exactly known, 
but are bounded by a known continuous function 
of X.  
If the panel deflection is assumed as output, the 
flexible spacecraft dynamics is non-minimum 
phase, then the spacecraft can be hardly 
controlledusing panel deflection feedback. For 
getting the ability of controlling the spacecraft 
attitude, while damping panel deflection using 
only the reaction wheel actuator on the hub, the 
new output should be redefined composed of the 
two statesas:.  ݕ = ߠ +   ݍ ߙ

(26) 
Where 0<α<1. As α value increases, damping 
deflection is more important. Using equation (23-
25), we can write:: ݕሷ = ଵܣ  +   ଶ߬ܣ

ଵܣ (27) = ଶ݂ + ߙ ସ݂  
(28) 

ଶܣ  = ݃ଶ +   ସ݃ߙ
(29) 

Taking  ଵܺ = ߠ + and  ܺଶ ݍ ߙ = ሶߠ + ሶݍ ߙ , From 
equation (27), we can write: ሶܺଵ = ܺଶ  

(30) ሶܺଶ = ሷߠ + ሷݍ ߙ = ( ଶ݂ + ߙ ସ݂) +(݃ଶ +   ߬(ସ݃ߙ
(31) 

Hence, we have: ሶܺ = ௌ݂(ܺ) + ݃ௌ(ܺ) ߬  
(32) 

ௌ݂ = ൤ ሶߠ + ߙ )ሶݍ ଶ݂ + ߙ ସ݂)൨  

݃ௌ = ൤ 0(݃ଶ +   ସ)൨݃ߙ

The control law will be introduced to converge in 
the states X1, to the corresponding desired 
trajectories X1

d. For this purpose, the following 
assumptions are of concern [21]: 

1. The signals X1 can be measured by sensors 
2. The command trajectories and their first and 
second time derivatives are bounded  
3. The control signals (input to the spacecraft 
actuators) are bounded because of the power and 
saturation of the actuators 
According to these assumptions and Eq. (23), the 
disturbances should be bounded as well, that is: 

)3,2,1()(  itd ii 
 

(33) 
The main objective here is to execute the sliding 
mode on the following surface [21]: ݏ = ሶ݁ +   ݁ߣ

(34) 
where, e = Xଵ − Xଵୢ , eሶ = Xଶ − Xଶୢ = Xሶ ଵ − Xሶ ଵୢ  
and λ = ݀݅ܽ݃ሾߣଵ, ,ଶߣ  ଷሿ is a diagonal positiveߣ
definite matrix. The stability and convergence of 

s and s into zero should be assessed. The sliding 
surface is proposed as [21-22]: 


t

iiiiii dssignkssignsks
02

5.0

1 ))(()( 

 (35
) 

Where, the following new variables are defined 
as: ݖଵ௜ = ଶ௜ݖ௜ݏ = −݇ଶ௜ ׬ ௜(߬)൯݀߬௧଴ݏ൫݊݃݅ݏ + ݅)(ݐ)௜ݓ ሶݓ  (1,2,3= ௜ =   (ݐ)௜ߩ

(36) 
By applying Eq. (34), Eq. (36) can be rewritten as 
in[1]: ݖሶଵ௜ = −݇ଵ௜|ݖଵ௜|భమ (ଵ௜ݖ)݊݃݅ݏ + ሶଶ௜ݖ  ଶ௜ݖ = −݇ଶ௜݊݃݅ݏ(ݖଵ௜) + ݅)(ݐ)௜ߩ = 1,2,3)  

(37) 
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Eq.(37) is the standard form of STA. The chosen 
Lyapunov function is presented as follows [22]: ܸ =   ߞ்ܲߞ

ߞ = ቂ|ݖଵ|భమ݊݃݅ݏ(ݖଵ)ݖଶቃ் = ሾߞଵ   ଶሿߞ
(38) 

The following controller is proposed by[1]: ݑ = ݃ିଵ ቀݔሷଵௗ − ߣ ሶ݁ − (ݏ)݊݃݅ݏభమ|ݏ|ଵܭ −
ଶܭ ׬ ൯݀߬௧଴(߬)ݏ൫݊݃݅ݏ −   ቁ(ݔ)݂

(39) 
Applying the Lyapunov stability theorem, the 
finite time zero convergence of variables iz1  and 

iz2  with the controller (39), is approved [22].It 

follows that if the conditions on the gains given 
by Eq. (40) are met, is approaches zero in finite 

time, 0lim 


e
t

.  

By applying Lyapunov stability theorem, the 
gains ik1  and ik2 )3,2,1( i should be chosen 

according to the following relations: ݇ଶ௜ > ௜  ݇ଵ௜ଶߜ > 4݇ଶ௜݅ = 1,2,3  
(40) 

Hence, the gains can be constructed through δ.  
If δwould be the environment disturbance, from 
(27), we can write: ሶܺଶ = ଵܣ  + ߬)ଶܣ +   (ߜ

(41) 
As shown in (41), A2 δ acts as term d(t) to (23). 
By considering uncertainty on the parameters 
such as Ic, (27) can be rewritten as: ሶܺଶ = ଶܣ) + ߬ (ଶܣ∆ + ଵܣ) + (ଵܣ∆ ߬ ଶܣ= + ଵܣ + ߬ ଶܣ∆ +   ଵܣ∆

(42) 
Hence using (40 -41) the d in (23), can be 
represented as: 
 ݀ = ߜଶܣ + ଶ߬ܣ∆ +  ଵ  (43)ܣ∆

In the simulations, the environment disturbances 
are modeled as the following equation: ߬ௗ = ቂ0.005 − 0.05 ݊݅ݏ ቀଶగ௧ସ଴଴ቁ +

(44) 

(200,0.2)ߜ + ଵቃߥ (ܰ. ݉)  

Where δ(T,ΔT) and ν1, ν2 and ν3 denote an 
impulsive disturbance (magnitude 1, period T, 
and width ΔT) and white Gaussian noises (mean 
values of 0 and variances of 0.0052), respectively. 
The uncertainty on the parameter of J in (22) is 
assumed up to 20%. The state vectors and 
controller effort are bounded as: | ଵܺ௜| < గଶ |ܺଶ௜| < 0.05 ݀ܽݎ ൗݏ |ݑ| <0.8 ܰ. ሶݑ|݉ | < 0.8 ܰ.   ݏ/݉

(45) 
According to (45), the δ term of (29) is 
constructed using (43), such as: 

1 2 3 0.0002      
(46) 

If the piezo actuator is used, the panel vibration is 
damped in the inner loop. Then, the output can be 
chosen as ݕ =  This process is the same as the .ߠ
one used in the pervious section by choosing ߙ = 0. However, in the simulations, it is shown 
that output redefinition approach results ina better 
performance in active control, too. 

Singular Terminal Sliding Mode 
Controller Design 

As mentioned, terminal sliding mode controllers 
are mainly used in controlling the systems of 
complex dynamics. In the complex dynamics, due 
to the lack of accurate information on the system, 
there exit some uncertainties in the modeled 
dynamics. A special feature of the terminal 
sliding mode controllers is their nature of being 
robust against uncertainties [23]. In order to 
simultaneously benefit from all terminal sliding 
mode controllers (like appropriate setting time 
and robustness to uncertainties) and to 
troubleshootthe significant standard terminal 
controller (system control around singular 
point(s)) in a simultaneous manner, the 
nonsingular terminal sliding mode controller is 
introduced [38]. 
Considering equation (12), the objective is to 
design an appropriate controller to converge the 
states X to the desired states Xd.Tracking the 
attitude angles ϴ to the command trajectory ϴd 
and damping panel deflection are the main 
objective here.  
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At first, it is assumed that no piezo is used as the 
actuator (equation (22)). Similar to the STA 
method, the new output is redefined as:  ݕ = ߠ    .ݍ ߙ+
By borrowing  ଵܺ = ߠ + and  ܺଶ ݍ ߙ = ሶߠ + ሶݍ ߙ , 
from equation (32), we can write: 
 ሶܺ = ்݂ (ܺ) + ்ݑ(ܺ)்݃ + ்݂  (ݐ)݀ = ௌ்݂݃ = ݃ௌ  

(47)

 
The sliding surface is defined as: 

1
pqs e e


  

 
(48)

where, the values p and q ( )p q are both odd and 
positive values and β>0. The nonsingular terminal 
sliding mode control rule is defined as: ்ݑ = −்݃ିଵ(ݔ) ൤்݂ (ݔ) + ߚ ௤௣ ሶ݁ ଶି೛೜ +
ܮ) + ቃ  (49)(ܵ)݊݃݅ݏ(ߟ

where, η>0, 1<p/q<2 and the L value are 
obtained from (44). 

( , )d X t L
 (50)

For stability approval, (49) is obtained from 
Lyapunov theory. The Lyapunov function is 
chosen as: 

2 T1 1

2 2
V s s s 

 (51)

For simplicity, in stability proof, the tracking 
is changed to the regular problem using axis 
transformation;  

hence, error is replaced with states: 

1

2

e Xe X
    

The time derivative of the surface is equal to: 

1 2 2

1 ps X X Xq
  

 (52)

According to the Eq. 52, where uT and ሶܺ is 
arereplaced in (52), we have: 

1

2

1
( ( , ) ( )sign( ))

pqps X d X t L sq 



  

 (53)

Hence, we can write:  

1

2

1
( ( , ) ( ) )

pqpV ss X sd X t L sq 



    

 (54)

According to 
1

2 20 0
pqX when X

  , Eq.55 is 
yield as: 

1

2

1
( )

pqpV ss X sq 



   

1

2

1
pqp X s sq  




   
 

(55)

1

2 2

1
0 0

pqp X when Xq 



   

 (56)

Hence, the stability is guaranteed and states 
approach zero in limited time. 
According to Eqs. 45-46, the terminal gains are 
chosen as: 

   0.01 0.04 0.05 , 0.1 0.1 0.1  
 

5
1 3 , 5

3

pn q p q     
 

(57)

Simulation results 

The simulation results for the closed loop system 
(12) with the control laws derived in the previous 
sections are obtained usingMATLAB and 
SIMULINK software. In this simulation, the 
system parameters are chosen the same as those 

in [17]: ܧ௕ = 76 ∗ 10ଽܰ/݉ଶ,ߩ௕ = 2840 ݇݃/݉,݈௕ = 0.7 ݉,ܾ = ௕ݐ,0.5݉ = ௖ܫ,4݉݉ =݇݃݉ଶ,ݓ௕ = 50m݉, ௣ܧ = 61 ∗ 10ଽܰ/݉ଶ,ߩ௣ =7400݇݃/݉,݈௣ = ௣ݐ,0.2݉݉ = 0.75݉݉,݀௣ =22 ∗ 10ିଵଶ݉ିݒଵ,ݓ௣ = 50 
 

The torque control input and its rate 
arebounded as: |߬| < 0.8 ܰ. ݉ ,  | ሶ߬| <0.8 ܰ.  and the electrodes voltage is bounded ݏ/݉
as: |ݒ| < 1500 v. The spacecraft disturbances are 
simulated according to Eq. 44. 

The noise of the earth sensor is modeled 
through Gaussian distribution with its mean and 
standard deviation of 0 and 0.2 degrees, 
respectively.The noise of gyro sensor is modeled 
as:  
 ߱ெ = ௚௬௥௢߱ܪ + ߱஽ + ߱ே . 

Where, ω and ωM are the actual and 
measured angular velocities, respectively. 
Random drift noise ωD and random bias rate ωN 
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are of Gaussian distribution, with 10-6 rad/s 
standard deviation and zero mean, respectively. 
Gyro transfer function is: 
௚௬௥௢ܪ  = ସସ଺ଽ ௦ା଼ଽ.ଶଶ௦యା଼ଽ.ଶଶ ௦మାସସ଺ଽ ௦ା଼ଽ.ଶଶ  . 

 
A number of time simulations are carried out and 
the designed controllersperformances are tested. 
In all simulations, no damping term in the 
spacecraft equation is considered. All simulations 
are made in the large maneuver subject to 
combined uncertain conditions.  
 

Active and passive STA controllers 
The results for the active (using reaction wheels 
as attitude actuator on the hub and piezoelectric 
patches as panel deflection actuator) and passive 
(using only reaction wheels as actuator) STA and 
terminal controllers are shown in Figs.3 and 4, 
respectively, where output redefinition method 
(ORM) in uncertain conditions is applied.  
 

  

  

Figure 3. Active and passive super twisting controller: (a) spacecraft attitude, (b) angular velocity, (c) reaction 
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wheel torque, (d) tip deflection, (e) tip rate, and(f) control electrodes voltage. 

Active and passive singular 
terminal sliding mode controller  

As observed in Figs.3a,b and 4a and b, using the 
piezo actuator has low effect on attitude 
performance, where the panel deflection is 
damped rapidly (Figs.3,4 d, and e) by using 
smaller controller effort (Figs.3 and 4c). 

Comparing the performance of the 
terminal sliding mode and STA 

controllers 
Comparing the performance of the two designed 
controllers, the system responses are shown in 
Fig.5 in uncertain condition without using piezo 
patches and with an output-redefined method. 
 
 

 

 

 

Figure 4.Terminal sliding mode controller with and without piezoelectric patches: (a) spacecraft attitude, (b) 
angular velocity, (c) reaction wheel torque, (d) tip deflection, (e) tip rate, and (f) electrode voltage. 
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Figure 5. STA and Terminal Controller without using output redefinition approach and piezoelectric patches: (a) 
spacecraft attitude, (b) angular velocity, (c) reaction wheel torque, (d) tip deflection, and (e) tip rate. 

 

As observed in Figs.5a and 5b, the terminal 
controller can track the desired trajectory in a 
smaller settling time (5a) and with a larger 
angular rate (5b), while the chattering is not 
removed (5c). Here, in STA, the chattering is 
removed (3c). As observed, in the terminal 
method, the panel deflection cannot be damped 
(5e and 5f) and STA has a better performance. It 
could be deduced that in the terminal methods, 
the chattering excites the panel vibration modes.  

Terminal sliding mode controller 
with and without using Output 

Redefined Method  
Showing the output redefined method 
performance, the spacecraft response to terminal 
controller in both cases of with and without RDF 
are drown in Fig.6. Here, by adapting this newly 
proposed method, settling time and controller 
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effort are reduced (6a) and (6c). In the terminal 
method, chattering exists, but using output 
redefinition method chattering begins after 400 sec 
with a smaller control effort. By adapting this 

method, the panel deflection is reduced and can be 
damped better (6e, f). 
 

 
    

   

  
Figure 6.Terminal Controller with and without using output redefinition approach and no piezoelectric patches: (a) 

spacecraft attitude, (b) angular velocity, (c) reaction wheel torque, (d) tip deflection, (e) tip rate, and (f) control 
electrodes voltage.  

 
In brief, the terminal controller has a better 

performance in the attitude response and a poor 
performance in the damping panel vibrations. By 
using the piezo electric patches as actuators, the 
chattering is reduced. The output redefinition 
approach improves the system performance. 

Conclusion 
The active and passive control of the flexible 
spacecraft arepresented. In passive controller, it is 
assumed that only one reaction wheel is obtained 
on the hub without using any actuator on the 
panel. In active controller, the controller is 
designed by applying an inner loop through 
piezoelectric as a sensor and actuator to reduce 

the panel vibration and an outer loop to control 
the spacecraft attitude in large maneuver.  

The flexible spacecraft is controlled by two 
outer controllers. One, a high order-sliding mode 
controller using super twisting algorithm and the 
other, a nonsingular terminal sliding mode 
controller. With respect to the non-minimum phase 
feature, the output redefinition approach is 
introduced. 

The performances of these proposed controllers 
are compared in uncertain conditions. It is found 
that the terminal controller has a better performance 
in the attitude response against its performance in 
the damping panel vibrations. In STA, the 
chattering is almost removed; consequently, the 
damping panel vibration occurs in a short time. 
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Using the piezo electric patches as actuators caused 
more rapid damping of the vibrations and a smaller 
control effort. The output redefinition approach 
improved the system performance. 
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