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In this study, two novel learning algorithms have been applied on Radial Ba-
sis Function Neural Network (RBFNN) to approximate the functions with high
non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture
Model (GMM) techniques are proposed to significantly minimize the error func-
tions. The main idea is concerning the various strategies to optimize the procedure
of Gradient Descent (GD) in terms of the input feature vectors. The probability
density of all feature vectors can help to optimize the learning rates of RBFNN by
applying GMM. Another possibility is to utilize the Evolutionary Algorithms (EAs)
to find the optimum solution. However, EAs often behave randomly which can't be
mathematically controlled. So, a combined RBFNN based on novel PE algorithm
has been proposed which has a soft behavior through the learning of non-linear
function. The PE algorithm defines the occurrence probability of local minima
in the space of extracted features as a Gaussian distribution correspondence to
each chromosome. Then, it estimates the entire probabilities of local minima in
an iterative procedure. These techniques have been utilized in the application of
robust satellites subset selection. Geometric Dilution of Precision (GDOP) is the
main factor to estimate the strength of goodness of each satellites subset. Then,
the subset with the lowest value has been selected for improving the positioning
performance, but it is so non-linear and imposes computational burden on navi-
gation systems. These techniques have been implemented and the results on mea-
sured GPS data demonstrate that they significantly track the non-linearity of GPS
GDOP comparison with the other conventional approaches.

Keywords: Neural Networks, Probabilistic Evolutionary, Gaussian Mixture, Sat-
ellites Selection.

1 Introduction

Radial Basis Function Neural Network (RBFNN) is
widely used in many fields such as data mining, artificial
intelligence, pattern recognition and other non-linear
approximation systems. The classical RBFNN defines
the neurons with Gaussian distributions in order to map
the input feature vectors to some sub-regions. It further
uses a linear weighted vector to map that sub-regions to
the RBFNN output. It has simple topological structure
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and universal approximation ability, but the important
issue is the learning procedure in order to optimize the
adjustable parameters including the center vectors, the
variances and the linear output weights connecting the
RBF hidden neurons to the output nodes [1]. The learn-
ing procedure of neural networks are utilized by sev-
eral methods which have been developed such as Evo-
lutionary Algorithms (EAs), Gradient Descent (GD)
learning,etc. [2-4]. However, EAs suffer from the slow
and premature convergence problems. GD algorithm is
a common learning approach, but it is so sensitive to pa-
rameters initialization and learning rates. The procedure
of learning is started with parameters initialization, then
the resulted errors from the network and target values
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are computed and are propagated to the hidden layers
[5-6]. Then according to these errors, the parameter
updates are applied toward the negative of gradient in
order to minimize the errors of learning. These proce-
dures continue up to reaching the desired error values
of network. The main issue for GA algorithm is the pa-
rameters initialization and the learning coefficients. Our
first challenge in this study is why neurons must have
the same strategies to learn all the feature vectors (data-
set). It is better to design some intelligence procedures
to distinguish the learning strategies of neurons for var-
ious feature vectors. We conducted some studies on the
learning procedure in order to have different learning in
neurons. With this assumption, the task is to evaluate
the learning rate of each feature vector corresponding
with its occurrence probability density. We propose
Gaussian Mixture Model (GMM) to help the GD al-
gorithm for better learning. GMM aims at providing a
richer class of density models than the single Gauss-
ian. Considering this proposed method, the estimation
of the likelihood of the features according to arbitrary
number of clusters is performed by GMM. Then some
linear equations are assumed for evaluating the learning
rate of such feature vector. Another main challenge of
EANN is that common EAs cannot be mathematically
controlled because of their huge randomness behavior.
In this study, we propose a novel Probabilistic Evolu-
tionary (PE) based RBFNN approximator which has a
soft behavior through the learning of non-linear func-
tion. PE algorithm defines the occurrence probability of
local minima in the feature space.

Geometric Dilution of Precision (GDOP) is a factor
denoting how well selected satellites subset is for posi-
tioning system. Several methods based on GPS GDOP
have been proposed to improve the GPS positioning ac-
curacy [7-10]. The common approach is to use matrix
inversion for all combinations and select the minimum
one, but it requires numerous computational resources
which cause computation burden [11-12]. In order to
estimate non-linear GDOP factor, Simon and El-Sher-
ief adopted a special set of features including traces of
the measurement matrix as well as its second and third
powers, and the determinant of the matrix [13]. They
initially proposed the NN approach to approximate and
classify the GPS GDOP factors. Extension work on
BPNN based GPS GDOP approximation has been done
by Jwo and Chin [14], but its learning takes so much
time not to mention falling in local minima as yet an-
other problem. There are some solutions for the local
minima issue, such as applying robust EAs in order to
find the better minima [15-16].

The rest of this paper is organized as follows. In sec-
tion II, there are some discussions about preliminary
backgrounds. Our proposed methods are discussed in
section III. Section IV provides our experimental re-
sults. Conclusions are made in section V.
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2 Preliminary Backgrounds

In this section, the preliminary backgrounds for our
proposed methods are discussed.

2.1 Radial Basis Function Neural Network

The RBFNN is a forward neural network model with
good performance and capability of global approxi-
mation. Furthermore, it is free from the local minima
problems. It can be a multi-input multi-output system
consisting of an input layer, a hidden layer and an
output layer. During the data processing, the hidden
layer performs non-linear transforms for the feature
extraction and the output layer provides a linear com-
bination of output weights [17]. Given a set of input
vectors {X,,...,X}, along with the corresponding target
values {t,...,t.}, the goal is to find a smooth function
f(x) that fits every target value exactly, so that f(x )=t
for n=1,...,N. This is achieved by expressing f(x) as a
linear combination of RBFs:
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Where L is the number of neurons, ¢, and c? are the
center and variance of i-th neuron, and b is the bias of
output layer neuron. Therefore, the fitting procedure
continues with optimizing the adjustable parameters
through learning procedure. This can be performed by
GD algorithm which tries to minimize the learning error
through the parameters updating in the direction of the
negative gradient. Using sum of squared error function
as a criterion of the matched design, we have:

E =3t~ f(x))" ®

So according to the GD algorithm, the weights can be
updated in direction of the negative of the gradient:

w(t + 1) = w(r) = nVE(w()) (©)

Jlx=cyll?

Considering y; = exp (— o) these equations can be
T
proved:
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In each iteration, the new data is introduced to the
network and the parameters are updated according to
above equations until it reaches the convergence con-
dition. It is recommended that the learning coefficients
decrease with iteration increases in order to guarantee
the convergence.

2.2 Gaussian Mixture Model

GMM is a simple linear superposition of Gaussian dis-
tributions which provides a richer class of density mod-
els comparison with single Gaussian. Therefore, the
density models can be given by:

P(x) = Yoy TN (X1, Z) )

Where K is the number of clusters, ,, u, and X, are the
mixing coefficients, mean vector and covariance matrix
of the k-th cluster, respectively. So with these assump-
tions, the task is to optimize the adjustable parameters
in order to have maximum likelihood solution. An ele-
gant and powerful method for finding maximum likeli-
hood solution for GMM is Expectation Maximization
(EM) algorithm. Here the common approach for EM is
introduced [18,19]:

Step 1: Initialize the means p,, covariances X, and
mixing coefficients 7, and evaluate the initial value of
the log likelihood:

Inp(X|m, 1, X) = Yney In{EE_ ) meN Kal i Z0)3 ®

Step 2: Evaluate the responsibilities using current pa-
rameter values (expectation step):

TN (X | g 2i)
K
j=1 TN (Xn|pj.55)

V(an) = ¥

Step 3: The parameters are updated by using the cur-
rent responsibilities (maximization step):

1
M;{IEW = N_kzﬁzl V(an) Xn (10)

1
Eﬂew = N_kzﬁ=1 Y(an) (X“ - “Eew)(xn = JU'J?EW)T (11
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Where:

= N
Nk - Zn:l V(an) (13)

Step 4: Evaluate the log likelihood and if the conver-
gence criterion is not satisfied, then return to step 2.

Through this procedure, we can estimate the Gaussian
mixture density of the dataset according to the selected
number of clusters.

2.3 GPS GDOP

GDOP is a geometrically determined factor that de-
scribes the effect of geometry on the relationship be-
tween measurement error and position error. It is used
to provide an indication of the quality of the solution.
Some of the GPS receivers may not be able to process
all visible satellites due to limited number of channels.
Consequently, it is sometimes necessary to select the
satellite subset that offers the optimal or acceptable
solutions. The optimal satellite subset is sometimes ob-
tained by minimizing the GDOP factor.

Leading to positioning error minimization, GPS
GDOP helps us to find the subset which has the best
geometric conditions. The least squares solution to the
linearized GPS pseudo-range equation, z=Hx+v , is giv-
en in [20]:

X=(H"H)"*H'z a4

Where the dimension of the geometry matrix H is nx4
with n>4. Consider the linearized pseudo-range equa-
tion, the estimated and true positions difference yield
the quality of navigation solution.

= (HTH) *HTv (s)
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Where v has zero mean and so does x. The covariance
between the errors in the components of the estimated
position is:

ExxT} = (HTH)"*HTE{wT}H(HTH)™" (¢

Where E{.} is the expected value operator. If all com-
ponents of v are pair wise uncorrelated and have vari-
ance &% then E{vv"}=8I and consequently:

BT} =8%(HTH)™ a7

The GDOP factor is defined as:
GDOP = \[trace(HTH) 1 = _[acelad/ (A

det (HTH) (18)

By using cofactors and a determinant in equation (18),
computation of GDOP has a closed-form solution in
terms of the elements of H. Since the measurement ma-
trix M=H" H is symmetric, it has four real valued eigen-
values A ,A,,A,,A,. Assuming that M is non-singular, then
the GPS GDOP can be expressed as [21]:

GDOP = 271 + 71 + 231 + 471 (19)

Because eigenvalues of the inverse matrix are inverse
of eigenvalues of the original matrix and the trace of a
symmetric matrix equals the sum of all its eigenvalues.
Considering optimal satellites subset selection, apply-
ing the matrix inversion method to all combinations
of satellites and selecting the minimum one is a com-
mon approach, but its implementation has analytically
high order and imposes a computational burden on the
navigation computer. Suppose that a receiver has 20
channels to receive signals from 16 visible satellites,
and then a total number of 16!/(4!x12!)=1820 GDOP
values need to be computed in order to decide the best
combinations of satellites. So GPS GDOP computing is
a crucial procedure for real-time or mobile based GPS
positioning. In order to approximate GPS GDOP by
equation (19), Simon and El-Sherief adopted a special
set of features [13]:
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hl(A) = /11 + }.2 + A.g + }\4_ = t?"aCE(M) (20)
hy(A) = 23 + 23 + 2% + 22 = trace(M?) @
hy(A) = A3 + 23 + A3 4+ 23 = trace(M?) (2

hy(1) = A, A,A34, = det (M) 23)

These equalities hold because M and its power are
symmetric matrices. So we have:

f:R*> R, h—-GDOP (24)
The task is to approximate the GDOP in terms of these
features.

2.4 GA for RBFNN Learning

The main disadvantage of learning with GD algorithm
is that the probability of falling the system error into
local minima is high and it can’t find the global minima.
Various methods have been proposed for solving the
problem. With assumption of NN’s error function, one
solution is that the network coefficients are updated uti-
lizing EAs such as GA (optimization problem). For this
purpose, at first the center vectors of Gaussian function
are estimated utilizing K-means and the variances for
all functions can be assumed as the same. Then the GA
is run in order to decrease the error of the RBFNN. Each
chromosome includes output weights coefficients and
bias. With assumption of # neurons in hidden layer, we
need n+1 genes for each chromosome. After evaluating
the GA parameters with trial and error, the processes
of selection, crossover and mutation are performed and
run until our criteria condition is satisfied. The algo-
rithm steps are as follows:

Step 1: Estimating the center vectors of Gaussian func-
tions (RBFNN functions)

Step 2: Initializing the RBFNN weights (chromosomes)

Step 3: Computing the Root Mean Square Error
(RMSE) of RBFNN for each chromosome

Step 4: Applying selection, crossover and mutation op-
erators

Step 5: Computing the RMSE of RBFNN for each
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chromosome. If the criteria condition is not satisfied,
then go to step 4, otherwise the program is ended.

3 Proposed Methods

In this section, two novel learning algorithms based on
GMM and PE algorithms applied on RBFNN are pro-
posed in order to approximate the functions which have
high non-linear order.

3.1 GMM-Guided GD for RBFNN Learning

Considering GD method, our main challenge is whether
it is appropriate for the neurons to have the same learn-
ing strategy for all feature vectors? It is better to evalu-
ate the learning rates with more intelligence strategies.
With assumption of GD method, the task is to estimate
the probability distribution of the dataset, which can se-
lect better strategy for learning of the non-linear func-
tion. In order to estimate the probability distributions,
the GMM is utilized. Then the learning rate of the neu-
rons for each feature vector is estimated as proportional
to the its probability density. Therefore, the process of
learning of RBFNN can be tracked through these steps:

Step 1: Estimation of the probability densities of each
feature vector with GMM utilizing EM algorithm.

Step 2: With assumption of each feature vector densi-
ty, the learning rate corresponding to that feature vector
can be evaluated as follows:

o=0, (1+p) 29)

Step 3: The GD learning algorithm is run and the net-
work’s parameters are updated (the center vectors of the
Gaussian functions are computed using K-means).

Step 4: Check the criteria condition and if it does not
satisfy your purpose, then go to step 2.

3.2 Probabilistic Evolutionary for RBFNN Learning

In this section, the preliminary backgrounds of the pro-
posed PE algorithm and its application for the learn-
ing procedure of RBFNN are discussed. Because of the
randomness and variability of EAs, its optimum con-
vergence is not robust, so the researchers are trying to
improve its performance. By considering this assump-

tion, we propose a PE algorithm which estimates the
occurrence probability of local minima in the space of
extracted features. Firstly, the chromosomes which are
defined as the Gaussian probability centers (for occur-
rence probability of local minima) are initialized, and
then the cost function is evaluated in terms of these
chromosomes. Then, the normalized distance between
the best chromosome and other chromosomes are com-
puted as follows:

N |ei—€pest]
d(i) = /——— 26
() 5 26)

N
i=1l@i—epestl

Furthermore, according to the evaluated distance, the
value of each occurrence probability is updated with de-
fined learning rate:

p(best-chromosome)=p(best-chromosome)+n xd(2nd-chromosome) (27)

plith-chromosome)=p(ith-chromosome)- nxd(ith-chromosome) (28)

For the best chromosome, the occurrence probability
of local minima increases relative to its distance from
the second chromosome and decreases for others. With
increasing the normalized distance, the probability must
decrease more. Then, the Gaussian centers are updated
toward the best minima as the following:

m=mFnx(my-m) 29)

Then, for each probability density, according to that
probability distribution, another point is selected and
the cost function is evaluated. If this minimum is better
than previous one, the Gaussian center will be relocated
to this new point and the variance of that distribution
is initialized. Otherwise, the probability value of that
area decreases and the variance value increases in order
to extend its searching area. At last, if the criteria con-
dition is not satisfied, these procedures are continued
from the step of distance normalization. The entire pro-
cedure of PE algorithm is depicted in Fig. 1. These pro-
cesses help to search around the Gaussian centers. The
searching behavior is controlled with some probability
distributions. Like other EAs, some parameters such as
populations and genes size, learning rates and the like
must be evaluated with trial and error. So it can be op-
erational to apply this algorithm to learn the weights
coefficients of RBFNN.
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In this section, the embedded system and data analysis results are discussed.

Yes

4 Experimental Results

Chromosome initialization
(Gaussian distribution centers)
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A 4

Computing the cost function

A

Evaluating the normalized distance
from best chromosome

A

Updating the occurrence probabilities

A 4

Moving the Gaussian centers toward
best chromosome

A

Selecting new point with Gaussian
distribution and evaluating cost
function

A 4

Changing the chromosome,

initializing the variance and

checking for the minimum
probability

New value < Old value

A4

Decreasing the probability
density, increasing the variance
and checking for the minimum

probability

Criteria condition

End of optimization

Figure 1. The block diagram of the PE algorithm.
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4.1 Embedded Measurement System

In order to evaluate our proposed methods, we assumed
the GPS GDOP approximation function a non-linear ap-
plication. The embedded system has been designed for
collecting the real GPS data such as elevation and azi-
muth of each tracking satellite and positioning coordi-
nate. The FPGA performs the GPS protocol commands
and PC USB interface. Two LEA-5 GPS modules from
the U-blox company were used. The LEA-5 module
series brings the high performance of the U-blox 5 po-
sitioning engine to the industry standard LEA form fac-
tor. These versatile and stand-alone receivers combine
an extensive array of features with flexible connectivity
options. Their ease of integration results in fast times-
to-market for a wide range of automotive, consumer and
industrial applications with strict size and cost require-
ments. It has 50 channels with over 1 million effective
correlators and up to 4Hz position update rate. The PC
interface has been implemented using FIFO USB and
a handshake component has been developed in FPGA.
After GPS starts the positioning, we can access the
information through the UART port. These protocols,
also the procedures of information saving on FPGA
DRAMs, and the USB interfaces were implemented on
FPGA. The VHDL program was developed and syn-
thesized by ISE10.1 software. Then in PC, the program
was developed using hybrid LABVIEW and MATLAB
software in order to collect, save and perform the data
analysis. At last, for each of the GPS pages with the
number of tracking satellites of about 12, we selected
four random satellites as a subset. Then by using con-
ventional inverses matrix calculation, we evaluated the
GPS GDOP values. The GPS measurements hardware
system is shown in Fig. 2.

PROM — Main —  DRAMs
Program

FIFO-USB FPGA
Controller
Power-CLK USB ] Serllcal

Manager Interface nterface

LEA-5 GPS LEA-5 GPS
Module Module

Figure 2. The configuration schematic of the hardware modules
of embedded system.

4.2 GPS GDOP Approximation using GMM based RBFNN

We run the GMM with three clusters. At first, the GMM
parameters were initialized with small random values.
Then through the EM algorithm, it was tried to maxi-
mize the log likelihood. Ultimately, the outputs of the
algorithms would be the mean and covariance matrices
of each cluster and also the probability densities of fea-
ture vectors. Fig. 3 shows the data clusters and proba-
bility densities utilizing GMM in terms of the third and
fourth feature which are more informative in compari-
son to others. GMM method estimates the combination
of three Gaussian functions in the space of the 3" and
4t features. By considering both features, it can be con-
ceptually derived that clusters are approximately dis-
tinguished from each other. So this probability density
function can help us to estimate the strength of learn-
ing over each input feature vector. In the space areas
where the probability of occurrence is lower, the GD
algorithms learned it with less efficiently (something
like outliers).

4'th feature

"2 as a4 05 0 05 1 15 2 25
Third Feature

Figure 3. Data clusters and probability densities have been esti-
mated utilizing GMM procedure.

Then, we initialized o= 0.2 and the learning rates
were evaluated through o= q,(1+p) for each feature vec-
tor. The GD learning method was run for updating the
weights coefficients of the RBFNN in order to decrease
the error of the network. This helped the learning pro-
cedure attend more to the feature vector with higher
probability distribution and the feature vectors with less
probability were less attended.

Evaluation of the algorithm was continued by divid-
ing that GPS GDOP data into learning and test parts.
Each part contained 300 data. Then both RBFNNs with
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the classical GD algorithm and our proposed approach
were designed. In each procedure, the GD algorithm it-
erations were adjusted to 1000 and the number of neu-
rons was 10. At first, the parameters of Gaussian cen-
ters, covariance matrices and weights were initialized
with the low random values. The number of the GMM
clusters, iterations and rules values were evaluated by
trial and error. The number of neurons was selected
so that RBFNN could learn the to-be-learned data and
the generalization of algorithm could be satisfied. If
we select the number of large neurons corresponding
to learning data distributions, the neurons are fitted to
learning data completely and the generalization is not
satisfied. With trial and error, we found ten neurons in
order to have the best learning.

4.3 GPS GDOP Approximation using GA based RBFNN

Firstly, the Gaussian centers were estimated utilizing
K-means so that the variances of all distributions were
the same. Then we ran the GA in order to decrease the
error of the RBFNN. Each chromosome included the
weights coefficients and bias of the network. So with
assumption of ten neurons in hidden layer, we needed
eleven genes for each chromosome. The population
size was estimated ten with trial and error. The result-
ed error values for each chromosome were evaluated.
Further 50% of the best chromosomes were selected
for the next crossover operation for producing new
offsprings. Even and odd crossover was performed
and the crossover coefficient was set at 0.4. Eventu-
ally, in order to stay away from the local minima, the
mutation operation was performed by adding Gauss-
ian distribution with defined weights. The Gauss-
ian distribution must have the variance of one with
zero mean features. Fig. 4 shows the convergence of
searching the local minima of the GPS GDOP approx-
imation utilizing GA based RBFNN with assumption
of 300 learning data and 300 test data. It shows the
cost function of the network in terms of GA genera-
tions. From Fig. 4, the performance of the algorithm
reaches 1.1. As it is shown, the mean of the RMSE of
the network has the randomness behavior. The RM-
SEs of best chromosome and average chromosomes
are shown by black and blue dots, respectively. As it is
shown, it requires 400 generations of the algorithms to
find its convergent minima. The chromosomes firstly
search with more randomness to find better minima,
then after some generations they converge to their own
local minima.
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Figure 4. The searching convergence of the local minima of
GDOP RMSE is shown utilizing GA based RBFNN.

4.4 GPS GDOP Approximation using PE based RBFNN

Since the mean cost function of common EAs is so ran-
dom, it is not robust and the researchers are trying to
improve it. For this purpose, we proposed the optimiza-
tion method based on the occurrence probability of the
local minima in feature space. At first, the chromosomes
which were the Gaussian centers were initialized. Then,
the cost function for each chromosome was evaluated.
The normalized distances of all the chromosomes from
the best chromosome were computed. Then, according
to these distances, the probability values of each chro-
mosome were increased or decreased with the coef-
ficient value of 0.2. Then, the Gaussian centers were
moved toward the best minimum. In the end, search-
ing around each chromosome was performed with its
Gaussian distribution and the chromosomes with prob-
abilities less than 0.9 were omitted. These processes
continued until the criteria condition would be satisfied.
In order to learn the RBFNN, the PE algorithm tried to
find the best weights for decreasing the error of the GPS
GDOP approximation. Fig. 5 shows the GPS GDOP
RMSE convergence in terms of the number of genera-
tions. As it is shown, during the evolution of algorithm,
in order to find the best local minima, the searching pat-
tern of error function is less random since it considers
the probability density of each feature vector. As it is
shown, the results demonstrate that the convergence
time of the algorithm significantly reduced to 195 gen-
erations as well as it finding lower RMSE of 0.81, com-
pared to the previous method. Fig. 6 shows the GPS
GDOP approximation based on PE based RBFNN. The
temporal patterns of real and estimated GPS GDOP are
shown here. It represents the tractable capability of our
proposed estimator for non-linear functions.
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Figure 5. The GDOP RMSE convergence in terms of the number
of generations.
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Fig. 6. The GPS GDOP approximation using PE based RBFNN.

The conventional RBFNN was also implemented with
learning rate of 0.2. In order to compare the algorithms
precisely, the statistical parameters such as RMSE, Max
and Min of errors are given in Table 1. At it is shown,
the PE based RBFNN have the best performance in
comparison with other methods. Also the intelligence
learning rate utilizing GMM on GD learning algorithm
improved the RMSE up to 62%.

Table 1. Evaluation of the performance of four GPS GDOP
approximation methods.

Methods
RBFNN | GMM-RBFNN | GA-RBFNN | PE-RBFNN
Parameters
Min -1.1 -0.9 -1.6 23
Max 53 3.1 2.76 2.1
RMSE 1.45 0.89 1.1 0.81

At last, after evaluating the GPS GDOP for all sub-
sets of satellites by RBFNN, the one with lowest GPS
GDOP value can be assigned as the best subset for po-
sitioning system. In comparison with the studies which
were performed in this field [12,13,14,22], the accuracy
of the proposed methods was significantly improved.

5 Conclusion

In this paper, in order to optimize the learning of RBF-
NN for GPS GDOP approximation, three methods were
presented: 1) GMM-Guided gradient descent based, 2)
GA based and 3) PE based learning for RBFNN. Two
main issues were discussed: 1) how to select the learning
rates for input feature vectors with different probability
densities and 2) how to mathematically control the pro-
cess of EA optimization. The strategies of selecting the
learning rates were chosen with the estimation of the
probability densities of feature vectors using GMM and
then the learning rates were evaluated proportional to
these densities. Furthermore, controlling the procedure
of EA’s randomness was proposed by defining the oc-
currence probability of local minima in order to search
the feature space with some probabilities. The embed-
ded GPS measurement system was implemented and
the proposed algorithms were designed to approximate
these measured GPS GDOP. The results demonstrate
that the proposed methods have significantly better per-
formance in comparison with conventional methods.
The RMSE improvements in our proposed methods
in comparison with conventional RBFNN led to 62%,
31% and 79%, respectively.
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