JAST. Vol. 9, No. 1, pp 49-58
© Iranian Aerospace Society, Winter - Spring 2012

J Journal of Aerospace Science and Technology

Practical Evaluation of EKF' and UKF? Filters for Terrain Aided Navigation

A. Moghtadaei Rad”

This article deals with batch and recursive methods used in terrain navigation
systems. These systems have a lot of disadvantages. That is why researchers have
studied various methods of aided navigation for many years and have introduced
different types of aided navigation systems with practical and theoretical advan-
tages and disadvantages. One of the main ideas related to aided navigation is
integration of extended Kalman filter and INS®. This integration method has a
significant weakness in practice that has caused it not to be highly valued as an
aided navigation method. Hence, in this article, the authors introduce a more
accurate filter (UKF) to be integrated with INS and other sensors such as ba-
rometers and radar systems. Then, the use of the aided EKF and UKF navigation
schemes are justified, their respective algorithms are developed and performed
for the needed applications and the simulation results are presented and com-
pared. Finally, the advantages of the proposed method are compared with those
of other batch and recursive methods. The most significant idea of the present
article is related to its practical application on a UAV that was tested in 2010.
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1 Introduction

Navigation is generally defined as estimation of posi-
tion, speed and attitude vectors of a moving object. This
would generally occur in flying objects through inte-
grating Inertia Navigation Systems (INSs) with other
systems and upgrading the position.

In recent years, the civil and military INS applications
in different air, land and sea transportation systems
have highly increased. However, because of initial er-
rors and measurement errors, there is a drift from the
position estimated by the INS to the real position. This
error increases with an increase in intervals from the
moment the system initializes. Thus, nowadays, precise
and modern navigation systems [1] utilize various tech-
niques to reduce INS drift. These methods are gener-
ally based on using aided navigation systems such as
Doppler aid, astral, stage matching and chiefly GPS.
If these techniques cannot be used, for example, when
the GPS signal under the sea is off or because of se-
curity issues in military applications, other navigation
schemes should be used to help increase the accuracy

and integrity of navigation. For decades, nominal uni-
ty uneven path profile and using it as a technique for
updating INSs, under general Terrain Aided Navigation
(TAN), have been considered. The main idea in TAN is
integration of four categories of information systems:
terrain clearance, absolute height, INS data and Digital
Elevation Model (DEM). The goal is to match terrain
height variations profile with the flight route map refer-
ence (DEM) and estimation of the accurate position and
azimuth of the plane. [2, 3, 4, 6, 11]

In inertial navigation systems, the position vector is
calculated by using a set of relative motion measure-
ments based on the first location of the plane. These
systems need to be regularly initialized because of in-
cremental errors. In this case, using the systems that
calculate their instantaneous position, regardless of the
previous status (e.g. GPS), is a suitable method widely
used to reinitialize the inertial system.
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2 Digital Elevation Model (DEM)

Collecting terrain elevation data is relatively time-con-
suming and expensive because it is usually performed
manually by an operator with photogrammetry devices.
The operator remodels the space geometry of the terrain
surface through overlapping two satellite or air photos
and measures 3 dimensional positions of the points.

Thus, using photogrammetry equipment, an experi-
enced operator can measure 6 to 10 points in a minute.
This process is performed manually using analogue pic-
tures. However, DTEDs are provided with higher speed
and precision using digitalized pictures and image pro-
cessing.

The heights of the terrains measured by the photo-
grammetry method is not the average position in the
region (pixels). Hence, the operator should measure
the height in the nearest visible intersection position.
This will lead to errors in terrain clearance data in both
the real terrain height and position of network crossing
points. Today, the manufacturers of DTEDs claim to
provide an accuracy almost equivalent to 2.5 meters in
the at the global level.

It should be emphasised that, except for height and
position which are measured on basis the meter unit in
simulink section, X and Y axes do not have any spe-
cial units. They are pixel points of DEMs representing
longitude and latitude within UTM transformation. The
pixel points can be converted to a geographical position
only on the digital plan saved on the plane computer
memory.

3 Terrain Aided Navigation System Inputs

Terrain navigation algorithms combine four categories
of information sources to estimate the object position.
These four measurements are speed vector, altitude, fly-
ing height (ground clearance) and base map (reference
matrix).

Speed vector is typically received from the inertial
navigation system. Absolute height is measured by ba-
rometer and inertial data integration and high-level ter-
rain is measured by the radar altimeter installed under
the plane body [5]:
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Figure 1. Height measured for ground effects and output DEM
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The reference map is known as a network of terrain
elevation values in a coordinate system whose flatness
position is presented using latitude and longitude or
Universal Transverse Mercator. Thus, the main purpose
of TAN is the integration of these four types of informa-
tion to produce the best possible estimate of the accu-
rate position using sensors.

4 Recursive Algorithm for Aided Navigation

The defect of the batch method is that if the terrain is
repeated or the region is flat, several positions are avail-
able in DTEDs that can adapt to measurements. Thus,
there is no consistent way to find the exact number of
measurements needed to find a unique position in the
database. In addition, the batch method provides un-
known outputs that cannot be used in the Kalman filter
(for integrating navigation systems).

The recursive method is attractive because there is no
prejudice about the number of points needed to estimate
a unique position. The idea of this method is based on
continuing processing measurements to achieve a
unique estimate.

Repetitive and flat surfaces require recursive methods
more than the other ones. For each new measurement,
there are a number of locations on a map matching to the
measured surface height, which indicates some points
through which the flying object has probably passed.
Depending on the surface, such regions can have any
number of surfaces or any arbitrary shape.

Therefore, after each new measurement, the recur-
sive method should deal with some estimated points
in a parallel manner. Finding the proper algorithm for
solving recursive methods is not as easy as the batch
method. Solution should be achieved by modelling the
problem while this is not true about batch methods and
it can be implemented without any specific modelling.

Recursive methods, although appeared later than batch
methods, are of a great diversity. Also, recursive meth-
ods have a more complex nature but, due to the variety
of their algorithms, they include a wider range of topics.

Generally, nonlinear estimation of state space can be
classified under three general categories:

1. Taylor series estimation of the input distribution
function (EKF),

2. Unscented transformation of the input distribu-
tion function (UKF), and

3. Monte Carlo transformation of the input distribu-
tion function (PF!).

1. Particle Filter
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Transformation of the estimation based on Taylor se-
ries, leading to relationships for the EKF and the UKF,
is as follows:

x = N(m,P) |,
y=gX),

(& &),

mp, = g(m)
Sp =G, (mPG, (m)" ,
CL =PG,(m),

Ogi(x)

x5

[Gx(m)] =

X=m,

The w4, is output average, S ;. is output variance and
C, is input-output covariance [16-19].

Please note that, due to the complexity of calculation
in the relations of the EKF and the UKF and because of
the three-dimensional DEM that needs curve fitting, a
simple model of plane is selected for simulink in MAT-
LAB.

Also, we should again emphasize that x and y axes on
DEM do not have any dimensions and are digital pixels.

4.1 Extended Kalman Filter Method (EKF)

In this section, a state space presentation of time in-
variant nonlinear system has been considered:

x(n +1) = ¢(x(n)) + Tw(n), .1)
z(n) = y(x(n)) + v(n),

where, I' is a matrix, input dynamics are linear and
independent of x(n) and operators ¢(x) and y(x) are
non-linear functions of x and n, as:

61(%) (%)
5(x) = 62:()() 30) = azz(x)
O (x) i, (9]

Also, assume that x has m state and z has p state. Kal-
man filter considers a linear SMM; therefore, the first
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step is linearization of SMM which has been previously

discussed. Also, we have assumed that ¢(x) and y(x)
are smooth enough in x. Thus, each of them has a valid
Taylor expansion.

If x(n) = x(n), Taylor expansion of ¢ around x(n)
would be as follows:

Hx() = $RM) + I, RO x@) - k@) |+ > (4.2)

[ 66, 00, a6, |
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Similarly, Taylor expansion of y around x~ (n) is as
follows:

Yx() = Y () + K 0) [ X)X () +--

We consider only the first two terms of expansions in
the above expression. Their result will be a first order

estimation of ¢ and I' that are linear estimations of x.
So, new results for linearized SMM are:

x(n+1) = o)) + T k()| x(n) - X(n) |+ Tw(n)
z(n) = y(X"(m) + I, X () x(m) - X(n) |+ v(n)
4.3)

Of course, the above SMM depends on x(n) and
X~ (n) estimation that will be found in the next steps.

In short, EKF algorithm steps are as follows:

1. Prediction:

P"(n+1) = Ty (X)) P()J§ (X(n))+ QI

4.4)
X (n+1)=¢(Xm))
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2. Updating:

o Toa- e perny T -1
K = P, G ) |1, (6 ()P (), (&) + Rao) |
R0 =X (0) + K| 2(0) - v& 1)

P(n) =P’ (n) - K(n)J, (x"())P"(n)
4.5)

3. Increasing frequency:

The value of n increases and the process goes back to
first step.

If we assume filtering as a transform for the distribu-
tion function of the input and output of the system that
leads to the same conception of unscented transforma-
tion to achieve the UKF, we would have a new EKF
relationship:

Qg1 * N(0,Qy ;)
I = N(O, Rk)

X = fxg .k -1) +qy

4.6
Yk = h(xy, k) + 1 “46)

1. Prediction:

my = f(my_,k-1)

i 47)
P = Fx (my .k -DP  Fx (my .k -1) + Q)

2. Updating:

Vk = Yk ~h(mg. 10 (4.8)
- - -1 (m-

Sk Hx(mk,k)PkHX(mk,k)+Rk
—p-17T (m- -1

Kk =P Hy (m] K)S;]

mk:mk +KkVk
_ - T
P =P -K S Ky

afj(X.k-1)
FX(m,k—l)—ian' ‘X:m 49
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Disadvantages of EKF Methods:
Disadvantages of EKF Methods are as follows:

1. The EKF will cause errors because of its linear
nature and, without proper linearization, rapidly
leads to divergence.

2. The EKF does not have any derivation for non-an-
alytic functions and, therefore, its implementation
is not feasible when the system dynamics or ob-
servation function is non-analytic and the Hessian
or Jacobian matrix is not available.

3. This method is effective for flying objects with
low manocuvrability like cruise missiles but it is
not effective for flying objects with higher ma-
noeuvrability. In fact, the UKF method is better
for these objects, and

4. Inthe EKF method, by changing the initial values
of the program and measuring noise variance in
different runs of the program, different estima-
tions would result which will be discussed in the
simulation section. Thus, the EKF is not a robust
method for estimation and, instead, the UKF
method is recommended. [13.20].

4.2 Unscented Kalman Filter Approach (UKF)

The UKF filter, based on unscented transformation and
sigma points selection, leads to fewer errors because
there is no need to calculate Jacobian or Hessian matrix
and also it is possible to calculate higher order moments
in comparison with Taylor transformation in the EKF.

In fact, we get a lot of information by using a few
points in this method which is considered another ad-
vantage for this approach. In this transformation, we
consider the system as deterministic and add noise to
the states of the system by an augmentation and con-
sider them all as a new state with a known variance and
mean value. Thus, the model is not stochastic anymore
and there is no need for Gaussian noise to be considered
a limitation to the EKF. In this method, unlike the par-
ticle filter method, samples are not selected randomly.
Samples (or the sigma points) are selected so that they
could have a Gaussian distribution.

In this method, also known as Sigma Point Kalman
Filter (SPKF), the state variable is redefined as a com-
bination of the main state and noise variable.
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Figure 4.1 demonstrates the advantage of the UKF to
the EKF in getting correct information out of the vari-
ance and the average of the output: [16, 17, 18, 19].
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Figure 4-1. Display of unscented transformation performance

As it is clear from the above figure, the mean and vari-
ance in the EKF are not the same as what should occur
under y = f (x) while this adaptation occurs exactly in
the UKF. If we write the unscented transformation ma-

trix formula, we will have:

X =[m m]+JC[0 VF ~F|] C=a?@m+k
Y =g(X)
mu:YWrn
Sy =YwyT
c,=xwyT
T
W, = [wr(t?) W(Zn)]
W= (I [Wm Wm:l) x dlag(W(O) W(Zn))
T
><(I'[Wm Wm])
O _ A AH_ A
Wrn Py Wrn TCESS) i=1..2n
(O 2 G _ 1
We =t (-af B Wiy P TCETS)
(4.10)

and the UKF formula based on this transformation will
be as follows:

1. Prediction:

Xk-1 :[mk-l

Xy = flxp .k -1)

SN LR vy

(4.11)
mi( = )A(kwm

- T
P =X WX + Qi
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2. Updating:

xi = | mi m;(]Jr\/E[o JP; -\/PI;]
Y = h(xg.k)
my = lewm
Sk = Yi WY)T+R

k k W( k; Kk 4.12)
Cy = xxW(Yy)

3. Calculation to obtain K:
Ky = CySy
mye = my + Ky (yy -my) (4.13)
P, =P - K S Ky
5 Assumptions of the Problem

Generally, the governing equations are:
X(n+1)=AmX(n) +Bmw(n) ,
z(n) = Hm)X(n) + v(n) ,
X(n) State
z(n) Observation
v(n) White Observation Uncertainty | 5.1
w(n) White System driving Uncertainty
X(0) Initial condition

E{v(n;)v" (ny)} = {R(gl) nrll:nfiz’
QM) n;=n,
0 nllnz

E{w(n))w' (n,)} ={

E{x(0)x" (0)} =y, E{x(0)} =0, E{w(0)} =0, E{v(0)} =0

For the non-manoeuvring plane, assuming linear dy-
namics for the plane and nonlinear observations, i.e. the
mapping between measured elevation by INS and input
of extended Kalman filter (vertical and horizontal posi-
tion of the plane), dynamic equations of the system will
be as follows:
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Time-continuous dynamic equations are:

X(t) = Acx(t) + Bou(t) + wit)

z(t) = h(x(t)) + v(t)

S o o O
S o o
oS O o O
S = O O

H:M:[hl 0 hy 0]

ax(t)

Discrete-time dynamic equations are:

x(n +1) = Ax(n) + Bu(n) + w(n),

z(n) = h(x(n)) + v(n),

X(n) =[xm) x(n) y(n)

0
A=(I+DAc)= :
0
0

R
c o - b
-]
I e

o oo ~

0

0
1
0
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0] [o
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B= IeACtBCdt: J-(I+DAC)BCdt: IABCdt:

1 A 0 0
01 0 0
.[ 0 0 1 A
0 0 0 1

where, @(n) is a white noise with zero mean and vari-

ance matrix of Q, as:
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e
2
A

0

0

(5.2)

(5.3)
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where, v(n) is observation noise with a mean of zero
and variance of R. Here, unlike classical problems in
which H is assumed to 0 g (1) g show the verti-
cal and horizontal position measurements, H is defined
[h(1) 0 h@) o] aswhereh (1)andh (2) are the out-
puts of the linearized function h (x (t)). This is due to
the type of linearization applied in this issue and the
input of the algorithm in which the noise location is

considered as:

v(n) = vy,

2
R=0} /T
The initial conditions are considered as below:

X7(0)=[1000 100 1000 100],
P'(0)=diag([1ooo 10 1000 10]),

5.1 Flight Test Physical Conditions

To examine the software abilities, all features of the
software were applied on a DEM model in the north of
Tehran (according to a table specification).

3968250
3067750

3667250

3066750
i

Figure 5-1. The DEM used in flight test.
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Table 5.1. DEM specification.

Dimension kilometer 2*2
Row Number 200
Column Number 200
Resolution meter 10*10
X
UTM | Southwest Coordi- 237870
Y nate of DEM 3966750
UT™M
ZoneUTM North 39
Roughness(sigma-t) 107.13
region Mountainous

Using the auto sample feature of the simulation soft-
ware and applying it on the DEM sample, 199 height
data related to the flight path on DEM on the reference
map were produced.

Table 5.2. Sampling parameter.

Maximum Error Of INS
IN 100 km £250m
Plane Velocity 0.8 mach
Dlstanc; ((:it;l E’rewous 200 km
Distance to Next Point 100 km
Sample rate 38 ms
Flight Heading West-East
Flight Height 100 m
Maximum DEM Error +7m
Radar Altimeter Maxi- 3% Flight Height
mum Error
Barometric Altimeter o) L1 .
Maximum Error 3% Flight Height

5.2 The Necessity and Stages of TAN Algorithm Im-
plementation

To use the terrain navigation system, the designer
should determine the flight route and reference map.
Route designer can choose the map in a way that the
missile moves over the maps in line with rows or col-
umns. Also, map intervals should not be large because
of the INS error.

Therefore, as shown in Fig.7-2, before the flight, a
number of reference map plans (DEM) of the terrain
height in certain regions are selected and stored with
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a proper format in the plane computer system. Then,
during the flight and after the initializing, the missile
is fired at point 4 and using the navigation system and
TAN, it would be directed through the middle points
of 5 - 12 to the final point (point 13). In fact, along this
route, in some intervals between the middle points, INS
and TAN data are integrated and, in this way, the drift
of navigation system will be corrected.

Various kinds of maps used in TAN differ in length,
width, cells and dimensions. The size of cells indicates
the accuracy of TAN algorithm. Hence, the first map
used in TAN is the largest plan and as the missiles come
closer to the goal, sizes of maps will be smaller and the
intervals will be shorter. On the other hand, decreasing
the size of cells improves the accuracy of TAN algo-
rithm.

6 Simulation Results

6.1 Effects of the EKF Method on the Mountain DEM
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Figure 6-1. DEM mountain view .
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Figure 6-2. Display of actual, noisy and estimated height.
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6.3 Results of UKF Method on the Mountain DEM
6.2 Effects of the EKF Method on the Knoll DEM
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Figure 6-5. Display of actual, noise and estimated height. Figure 6-8. Display of actual, noisy and estimated height.



Practical Evaluation of EKF and UKF Filters for Terrain Aided Navigation

5 Input and Output Estimated Mean With UKF

£ 2100 T :

5 2000 —— IN§ Ouiput

§_ [T - i Ooput st Mo |
= 1900 VOO ... bt R —
2 1e00 i ‘

= il 0 100 150
% 10000
2 —— —X Position r
% soopll — X Position Estimaed Mean | R L i
x 0 i i

1] a0 100 150

£ 10000 T
= === Psition
% 5000 Y Position Estimated Mean |

- ol * -

Figure 6-9. Display of actual and estimated input/output mean.

6.4 Effects of the UKF Method on the Knoll Hill DEM:
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Figure 6-10. Display of the main, noisy and estimated path.
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Figure 6-11. Display of actual, noisy and estimated height.

57

< Input And Output Estimated Mean With UKF
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Figure 6-12. Display of actual and estimated input output mean.

9 Conclusion

From the results obtained in this research work, the su-
periority of the UKF to the EKF method in flying ob-
jects’ position estimation becomes clear. Certainly, the
EKF may be able to estimate the position of the flying
objects with low manoeuvrability and is helpful to im-
prove the INS estimates, but it does not work for the
flying objects with low manoeuvrability. Meanwhile, in
parts of the map where roughness is low and the terrain
is flat, the EKF leads to errors due to linearization while
this does not occur in the UKF.

Thus, the UKF as a recursive method with less com-
putational complexity than the PF [9, 15, 21, 22] can be
widely used as a robust aided navigation system with
INSs. As a final point, it needs be noted that this article
may not have a strong theoretical contribution to sci-
ence but, owing to its significant practical applications
in industrial manufacturing, it may be favoured over
other similar research works.
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