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A Novel Approach to Design

Truss-Beams for Natural Frequency

N. Fazli' , S.M. Malaek?, A. Abedian?

Here, we present a novel two-step approach for optimum design of cellular truss-
beams based on desired natural frequencies. The proposed approach attempts
to decrease the design complexities, based on the so-called Axiomatic Design,
before any effort to solve the physical problem itself. It also serves as a generic
approach which finds its generality through dimensional analysis, its accuracy
from finite element analysis and finally its optimality from the fact that it
remains true for all similar frameworks. The applicability as well as the strength
of the method is highlighted by some numerical examples.

INTRODUCTION

Truss-like beams are common for space applications
due to their interesting performance [1]. In fact, most
topology optimization studies often suggest truss-like
solutions to replace beams [2]. In addition, the amount
of research conducted on a special category of truss
structures shows that the subject is still an interesting
topic for research (such as tension [3], tensegrity [4] and
hierarchical [5,6] trusses).

In the process of structural design, various re-
quirements related to the dynamical behavior of a
structure could be investigated. Nonetheless, in most
cases, the dynamical behavior of a stationary structure
is simply defined by its natural frequencies as well as
mode shapes, especially the smallest one (associated
with the first mode) which is simply referred to as
main natural frequency. For large and lightly loaded
structures, natural frequencies are more likely to be
critical in controlling the overall design of the structure.
For the sake of simplicity, the value of the first
natural frequency (f) may be regarded as a metric for
identifying the structural rigidity; obviously, a zero or
near zero value of f indicates that a kind of instability
exists in the structure.

Design studies regarding vibration of truss struc-
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tures vary from pre-design (based on the so-called back-
of-the-envelope calculations [7]) to the utilization of
optimization tools such as topology optimization for
natural frequencies [8]. In addition, there have been
some attempts to facilitate analysis of trusses. For
example, adaptive generalized FEM is introduced for
free vibration analysis of straight trusses in Ref. [9],
global-local approach is proposed for large trusses in
Ref. [10], and continuum modeling is proposed for
trusses in Ref. [1]. The last case has been verified
in Ref. [11]. Nevertheless, what we present in this
work is different in approach and scope as it uses the
philosophy of the so-called Aziomatic Design [12]. It is
more accurate compared to that of back-of-the-envelope
calculations and it is simpler as opposed to the topology
optimization procedure for natural frequency.

In addition to the previous references, in the line
of work, Ref. [13] presents a basic theory to determine
whether an optimal truss-solution exists if we had to
put constraints on natural frequencies. This work is
capable of considering any arbitrary higher natural
frequencies after the first one while not being concerned
with local vibration of links as a bar. Moreover, Ref.
[13] works on fixed topologies and materials only. On
the other hand, while only constraint of the first natural
frequency is of concern, our approach - by extremely
lower complexity - is with comparably more efficient,
as it covers local vibration. We also provide global
sense through design charts (in contrast to intangible
mathematical formulations). Our method also works
as a tool for material selection and has the capacity to
work with various topologies and materials.
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Design Problem Definition

Here, the objective is to introduce an effective approach
to design truss-beams for both minimum required nat-
ural frequency and minimum possible material weight,
which are both very critical for space applications. The
objectives are expressed as:

Design: a truss-beam,
To minimize: structural total mass,
Subject to: f > fy4

where f,; is the desired natural frequency (f) for the
structure at hand.

The approach used here attempts to decrease the
design complexity before any effort to solve the design
problem. To this end, some relevant theoretical and
design backgrounds are discussed, where the problem
is stated in a non-dimensional form. Findings in
non-dimensional terms are then expanded to FEM. It
is shown that the analysis results obtained by link
element type are the locus of optimum points where
max. f occurs. On the other hand, a truss (of
interested categories) may not exhibit a first natural
frequency more than what was predicted by ideal link
element. Moreover, this extreme value may be achieved
by optimum design of the truss. This finding results
in a material and scale invariant design graph which
relates required natural frequency to possible optimum
values of n. After predicting the possible values of n,
it is an easy task to size and select the cross sections
either analytically (by approximation) or numerically
(by exact matching).

The proposed approach is further verified by
numerical examples in both 2D and 3D space. Com-
parison of the results with an existing work shows the
effectiveness of our approach. Finally, the entire design
algorithm is re-investigated in the context of Aziomatic
Design to clarify the design philosophy behind the
proposed approach.

THEORETICAL BACKGROUND
To give a general understanding of the process and to
reduce the number of governing parameters, dimen-
sional analysis is used and the vibration of uniform
beams is then stated in the non-dimensional terms.

The result is further extended to truss-beams using
FEM.

Dimensional Analysis
Natural frequency (f) of a typical beam has a func-
tional dependency as:

f = (L, E, p, shape, B.C.) (1)

where L is the overall length of the beam, E is the
modulus of elasticity, p is the material density, shape
and B.C. are the collection of all non-dimensional
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quantities that define the configuration as well as
boundary conditions of the beam. Therefore, only
four items remain to be converted to non-dimensional
parameter(s):

FIT=Y, LILl, E[ML™'T*), p[ML™]

Here, T, L. and M represent the basic dimensions for
Time, Length and Mass, respectively. According to
Buckingham’s theorem, there is only one (4 — 3 =
1) m-term (non-dimensional parameter) which could
describe all four parameters. Let F denote this -
term which we refer to as 'mon-dimensional natural
frequency’. F is found to be:

_ 2rLf
E/p
In Eq. (2), coefficient 27 is added for convenience,

w = 27 f, with, w being the circular natural frequency.
Therefore, Eq. (1) is reduced to:

(2)

F = F(shape, B.C.) (3)

One could conclude that f is proportional to \/E/p /L.
This fact will be used throughout this work while
developing some design graphs.

Total structural mass (m) is another important
state variable which may serve either as a design
objective or a constraint. For a typical beam,;

m = ’I’)’L(L7 P, Sh(lp@) (4)

In Eq. (4), m, L and p are based on two basic
dimensions (M and L). Therefore, only one (3 —2 =1)
m-term could describe all of these parameters. Let
M denote this m-term and let us refer to it as 'non-
dimensional mass’. M is found to be:

m
M:m (5)

Now, Eq. (4) is reduced to:
M = M(shape) (6)

The next section shows how we can use the introduced
equations for a uniform beam.

A uniform beam
Natural frequency (f) of a uniform beam follows from:

c EI
fzﬁﬂm (7)

where I is the second modulus of area, and c¢ is
a non-dimensional constant which represents the ef-
fect of boundary conditions. As an example, ¢ =
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3.52,72,15.42 and 22.37 are for clamped-free, pinned-
pinned, clamped-pinned, and clamped-clamped B.C.’s,
respectively [14].
Eq. (7) would be rewritten as:
2rLf I A
=c
Elp

Considering Eqs. (2) and (3) implies that;

shape
B.C.

—~—
F = F(shape, B.C.) = VA (9)

where + = /A% and A = A/L? are non-dimensional
forms of I and A. As an immediate conclusion, + must
be increased to its largest possible value (upper limit
is restricted with local phenomena).

One could also show that:

m pAL A

prL3_pL3 —L2—A (10)

According to Eq. (9), the value of ¢ remains
independent of scale and is, in fact, only a function
of shape. Figure 1 shows values of ¢ for all possible
prisms with polygonal cross sections. When higher
values of ¢ are required, a hollow polygon would be
the choice. To identify a hollow polygon, let us define
dm [t as thickness ratio where

do dl do - d7
_ ot di = 5 (11)

in which d; and d, are reference lengths of the inner
and outer boundaries (i.e. inner and outer diameters or
side lengths). Using these parameters, higher possible
values of ¢ will be explored according to Figure 2, which
provides a glance on possible values of ¢ for a single bar.

dm

Evaluation of f Using FEM
Eq. (9) is useful only for a single bar. To evaluate f
for a full truss structure, utilization of finite element
method (FEM) is a common choice with [K] and [M]
being the stiffness and mass matrix of the structure
and f the smallest eigenvalue of:

| —w? [M] + [K])| =0 (12)

where w = 27 f.

With Eq. (2), it is possible to rewrite Eq. (12) as
follows:
|~ F2 M) +

K] =0 (13)

Here, K and M are independent of E, p and the
overall beam length (L). Tt should be quite clear
that all complexities regarding diversity in materials
and lengths will be included in M and K via non-
dimensional forms of I;/L, p;/p, E;/E, and others as
well.

We might add that it is possible to solve the
problem with every parameter set to a unit value (for
example: p=1000, E=1ell and L=1) and then convert
the results to a non-dimensional form using Eqs. (2)
and (5). In that case, final results would be invariant
of initial values. Nonetheless, in such an approach,
one might not be able to use his engineering judgments
and feelings to evaluate the results or to prevent any
numerical problems. However, we might add that in
this work both link and beam element types, for which
the specifications are given in Table 1 are of primary
concern.

In summary, link elements are pin-jointed to one-
another while beam elements are clamped together.
Moreover, beam elements are based on Euler formu-
lation and are capable of modeling axial strains. In
addition, to provide a complete representation, torsion
DOF could be added to the formula; nevertheless, here,
it is not of primary concern.

In the next section, we discuss some background
materials which are important to understanding the
process.

DESIGN BACKGROUND MATERIAL
Modeling Aspects
Here, we are primarily interested in a type of truss
beams which are composed of some identical cellular
elements. We might freely refer to them as unit cells.
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Figure 1. Value of . for polygons (n: number of sides).
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Figure 2. Value of ¢ for hollow polygons.
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Fach unit cell is a square in the 2D space or a regular
prism in the 3D space. The cells are stacked only along
the beam length (Figure 3).

Here, these truss-beams are stated by two param-
eters, namely number of cells (n), and cross sectional
areal of individual bars (A). Therefore, to design a
truss-beam, one simply needs to find the appropriate
values for n and A. Nonetheless, we still need to make
some assumptions to facilitate the process for a Finite
Element Model (FEM)

Assumptions

A geometric model of a truss geometrically consists of
some lines or links and joints. For the associated FE
model, it is necessary to assign appropriate material,
element type, and cross sectional area to the lines. To
make the model invariant to any material change, we
assume that the material remains linear isotropic and
all deformations are small throughout the process.

We notice that dimensional analysis shows that
the shape of a cross section may be kept independent
of its area. That is, the shape may be selected using
Figure 2. This approach helps us keep the results
independent of the actual cross sectional shape. We
further assume that the sections are locally stable and
any local instability is effectively prevented. Now, what
remains to be selected is an appropriate element type.

Hybrid Method for Analysis

As a quite general approach to a truss structure, the
candidate element types are links and beams. The link
element represented ideally carries axial forces only.
The ideal hinges would not allow any shear or bending
moments. However, such an element is not able to
catch any lateral vibration of individual members.
On the other hand, beam element represents actual
conditions more realistically; however, they require
more computational time and effort.

Here, we compare the results for a given structure.
Figure 3 shows a typical family of trusses constructed
from solid rods (v = 1/(4m)). Figure 4 represents the
results obtained while using links or beams element
types for some values of n and various values of material
volume. Here, cross sectional areas of rods are so
adjusted to set M equal to a desired constant value. It
is noted that Figure 4 is invariant of p, F and L. The
interesting outline of this figure is that the resulting

Table 1. Specification of utilized element types.

Link Ele. Beam Ele.
Number of node 2 2
DoF (2D) U,,U, U.,,U,,0.
DoF (3D) Uy, U, U, Uy, Uy, Us,
0,,0,,0.
Shape Function Linear Hermit (bending),

linear (other)
U: displacement DoF, © rotational DoF,
(x,y): 2D plane, z: third axis.
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Figure 3. Samples of intended truss-beams
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Figure 4. Results of analysis using link and beam element
types in various V and n.

values of f are independent of the volume when link
element type is utilized. In addition, there is a value of
n (referred to as nmin) above which the predicted F by
link element type is equal or greater than the calculated
F by beam element type which is supposed to be more
realistic ( m = 6 in Figure 4). This phenomenon, which
is based on the same family of trusses and will be
discussed subsequently, is also seen in Figure 5.

Figure 5 shows some more interesting features of
truss structures. This figure serves as a matching dia-
gram in n — F space for three approaches of calculation
as follows:

1. Beam element solution (almost exact solution - f),
2. Link element solution (fr),

3. Analytical solution based on Eq. (9) for the longest
bar in the truss, which are diagonal elements, with
pinned-pinned ends condition (f4).

With Figure 5, there is a value of n (nmn),
above which the link element solutions are acceptable.
Interestingly, the region for this transition is located
where the maximum natural frequency for the truss
occurs. It is more exciting when one finds out that
the third graph (fa) also passes from the same region.
This finding is, in fact, the cornerstone of the design
procedure proposed in this work and discussed in the
next section.
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DESIGN PROCEDURE
The design objective, as previously outlined, is to find
n and A to have a truss with f > f; while the material
consumption is kept to a minimum possible. We follow
this discussion with these steps:

1. Select the value of n using the provided design chart
of Figure 6. We further discuss the chart in the next
section,

2. Calculate the appropriate value of A using Eq. (9)
or an equivalent numerical procedure.

Different case-studies conducted by the authors show
that these steps inherently result in a near optimum
design point. This, in fact, lies in the approach we use
to develop the design chart.

Design Chart

As stated before, the natural frequency obtained by
link element is almost invariant of structural total
volume. In addition, there is a value of n above
which the obtained results by the link elements are
dependably sound. In fact, with Figure 5, for n < 5,
the beam element shows that the local frequencies
dominate the design of the structure while for n > 5,
the resulting truss is so stiff that global frequencies
dominate regardless of the type of the elements. Tt
is noted that the transition point of n = 5 is where the

0,3
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0,2 - ¥ Beam Ele.

7 n 9
Figure 5. Correlation of analysis using link and beam
elements and what predicted analytically for single element.
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Figure 6. Design Graph.

maximum (here, optimum) natural frequency occurs.
On the other hand, n = 5 suggests that the resulting
structure with link element type is the locus of op-
timum points. This observation makes it possible to
predict an optimum value for n.

Figure 6 shows values of F versus n while using
link element type for two design patterns of Figure 3.
Again, the graph is invariant of material properties
and structural total volume (i.e. A), and elements
cross-sections. Obviously, for each desired value of F,
optimum value of n could directly be obtained from
the provided graphs. Each truss pattern will, of course,
have its own design chart. It is noted that whence Fy
falls outside of the normal range (that is, Fy > F=1,),
the chart proposes using a material with relatively
better performance, that is, a material with a higher
value of \/E/p. This approach, in fact, lowers the F,
to a value less than F,,—; which, in turn, makes n > 1
possible.

After selecting the optimal n, it is an easy task to
size A by the existing analytical means, such as Eq. (9),
or numerically as is discussed subsequently. In brief, for
each value of n, there is a path in F — M space which
describes possible F for any available M. The desired
point in this space is where F(M) equals Fy. On the
other hand, M is a function of A. Therefore, required
A is the root of F(M(A)) — F4. Here, M(A) is known
analytically, while F (M) is known numerically and the
equation given by F(M(A)) — F4 = 0 may be solved
by any available numerical procedures.

NUMERICAL EXAMPLES
To show the effectiveness of the proposed approach, we
seek to design a 100 m cantilever antenna beam the
structure of which is expected to have at least 1 Hz
as its first natural frequency, while having a minimum
possible total weight. We further assume a typical
aluminum alloy with E = 70 GPa and p = 2700 kg/m?
is used.
For this design problem,

_ 27TLf,1
" VE

and we desire to find both 2D and 3D solutions.

=0.1234

2D Solution

We, first, consider the problem in a 2D space. Based
on Figure 6, an optimum number of cells is n = 8 and
the value of the cross-section (A) follows from:

¢ | EI 2m fal% o, p
- - A= (——£ LA
fa 2r\| p Al = ( c ) (EL)

On the other hand, [4 = v/2 L/n and ¢ = =2 for
pinned end conditions for individual bars. Selecting
solid rods with ¢ = 1/(4 7) leads to A = .019 m?2.



26

Evaluating numerically in an almost exact manner
with a beam element type, gives a natural frequency of
1.04 Hz which is in excellent agreement with the desired
target.

The total structural mass of the resulting truss
structure amounts to:

1
m=(34+V2+ —)pAL = 23511 kg
n
The numerical approach, however, leads to:

A =0.011 = mass = 13703 kg

This represents a structure with exactly 1 Hz natural
frequency.

Comparison of the results suggests that a small
increase in the first mode natural frequency by only 4%
(£2=1) could result in a significant increase in the total
structural mass up to 72% (2233793 Therefore,
for final sizing of A, numerical adjustment using the
analytical result as a starting point is necessary.

We still need to show that the resulting values are
near-optimal enough. For this, we use Figure 7 which
is constructed on the basis of careful evaluations. In
brief, correlation between F and M is plotted for three
values of n. The intersecting point of these paths with
horizontal line of F = Fy is the exact matching point.
For comparison, the result of approximate sizing (using
Eq. (9)) is also mapped to space .

As it is seen, n = 9 does not satisfy the require-
ment of f > f4. But, if the designer accepts a slightly
lower value for f;, it would give a light design with
lower sensitivity to the material volume. Truss-beams
of n = 7 will result in heavier structures, however,
if some higher values of f are required, the optimum
value of n would be switched back to 7. Therefore,
n = 8 would be the exact optimum design. Now, what
remains is to size A to achieve the exact optimum point.

3D Solution

Now, let us consider the same problem using the 3D
truss pattern of Figure 6 using rods. Figure 6 suggests
n = 4 corresponds to the optimum design and results
in an analytical approrimation of:

A=0.307Tm? (let [4 =+2L/n)
= mass = (6 + 3V2 + 3/n)pAL = 9.11¢5 kg
= f=1.05Hz

Almost Exact values based on numerical procedure,
however, are:

A =0.220m?, mass=6.53¢5 kg, f=1Hz,

These values are in line with that of 2D design but
with significantly more total mass which is logical. Tt
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is noted that the number of cells in a 3D truss is lower
with respect to that of a 2D design. This means a 3D
truss is more influenced by global effects.

Similar to the 2D design, Figure 8 is constructed
based on almost exact evaluations which helps us
investigate the neighborhood of the obtained design.
As it is seen, n = 3 clearly violates the requirement
for f = 1 Hz. However, n = 5 approaches the desired
f but it is not capable of reaching f = 1 Hz with a
reasonable mass. Therefore, n = 4 remains to be the
optimum design.

It would be interesting to use tubular elements
instead of solid rods while examining the results. In
such a case, there would be a significant reduction in
the total structural mass without any change in n. For
example, considering a tube with d,,/t = 10 results in
a mass ratio of:

ube T0 dm -
Mtube _ Trod — (™™ 1 7)1 =0.198
Mrod Ltube t dm

which says tubular truss is five times lighter while
providing the same first natural frequency.

Comparison with an Existing Result

In Ref. [7], the natural frequency of a truss supported
segmented reflector is analyzed based on the so-called
back-of-the envelope calculation. The final result of the

¥-n=7 & n=8 - n=9
* Approx @ Exact Opt. 1 Hz
0.1 : T - T - 1
4.0E-6 8.0E-6 1265 M 16E5

Figure 7. Neighborhood of design point for 2D example.

[ - n=3 ®np=4 - n=5
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0,08 I I ! I I ; J
5,0E-5 2,0E-4 M 3,54
Figure 8. Neighborhood of design point for 3D example.
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work gives:
0.852
f= T(h/D) nE/p (14)

where D is the reflector diameter, h is its depth (see
Figure 9), and 7 is the ratio of truss (structural) mass
to the antenna total mass. This equation may be
rewritten as:

_2nfD _ 5.35e5,/1
E/p n

(15)

Here, h = ¢, D/n is assumed. Although this approxi-
mate equation is only valid for a special case, it shows
F = F(n), which is in agreement with the findings in
the current research work.

Eq. (15) encourages us to re-plot Figure 6 with F
vs. 1/n. The result is shown in Figure 10 which implies
that for big values of n, a linear relationship between
F and 1/n exists.

PHILOSOPHIZING THE DESIGN PROCESS
BASED ON AD
The design problem, as formulated in this work, re-
volves around two design parameters of (1) n and (2)
A. These parameters are used to satisfy two frequency
requirements related to (1) FR1 for local natural
frequency and (2) FR2 for global natural frequency.
Both requirements are affected by design parameters:

|:.f(7'labal:| _ {Xm X1,2} {ﬂ} (16)
frLocal Xo1 Xoof |A

In Eq. (16), a X, ; represents a relationship between
contributing factors. This implies that the design
process is coupled based on the so-called Aziomatic
Design (AD) [12] and, therefore, hard to solve.

In the current work, we use a different approach,
which results in a slightly different design matrix:

|:-7:G’lobal:| _ {Xm 0 ][ n } (17)
-7:Local X?,l X2,2 14/L2

where the new design matrix is de-coupled as X; » = 0.
This approach reduces the complexity of the problem
at hand [15] and, in turn, means by the design problem
could be tackled in two steps using the proposed
approach. This is the cornerstone of the Axiomatic
Design that examines a design problem and how it
is modeled before any attempt to solve the problem
[16] and, in this work, we have been able to use the

AD approach to design a space structure based on its
desired natural frequencies.

CONCLUSION

Truss-beams are still an interesting topic of research,
especially in space applications. Satisfying a minimum
required first natural frequency is, in fact, a critical
design task for space applications as there is very little
if no damping in space environment and we have been
able to device an effective engineering tool for such a
task.

The existing practice attempts to solve the prob-
lem in its coupled condition and, therefore, requires
a great deal of trial and errors, which becomes, very
time consuming task and there is no guarantee to
give a solution at all. In a mathematical sense,
one might recall that any system of equations of the
form of Eq. (16) would not necessarily provide a
solution. In this work, however, we have been able
to convert the system matrix to a lower-triangle one
(Eq. (17)). This approach guarantees a solution. In
fact, we decrease the design complexity by systematic
and proper assumptions. Nonetheless, the proposed
process of this work is only useful in cases where the

Figure 9. Truss-supported segmented reflector [7].
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Figure 10. Design graph - F vs 1/n.
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first natural frequency is of prime importance. For
cases where other modes become important, we need
some innovative approaches to tackle the problem.
Obviously, in most practical applications, the first
natural frequency is very important and, therefore, this
work remains an efficient design tool.
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