JAST, Vol. 6, No. 2, pp 115-120
(O Iranian Aerospace Society, Spring 2009

RESEARCH NOTE

chnmal of Aerospace Science and Technology

Buckling and Vibration Analyses of

Angle-Ply Symmetric Laminated Composite
Plates with Fully Elastic Boundaries

S. Amirahmadi', R. Ansari’

The main focus of this paper is on efficiency analysis of two kinds of
approzimating functions (characteristic orthogonal polynomials and character-
istic beam functions) that have been applied in the Rayleigh-Ritz method to
determine the non-dimensional buckling and frequency parameters of an angle
ply symmetric laminated composite plate with fully elastic boundaries. It has
been observed that orthogonal polynomials yield superior results for the lower
modes. Also, the overall CPU time consumed to perform the calculations by the
two different procedures for constructing the approrimating functions showed
that orthogonal polynomials are computationally more time efficient. A novel
approach is devised for the construction of characteristic beam functions for
buckling and vibration analysis of an angle ply symmetric laminated composite
plate. Numerical results are presented and discussed.

INTRODUCTION
The main purpose of this article is to discuss some
aspects of the interesting paper developed by Bhat [1].
Bhat developed an interesting approach in vibration
analysis of a plate by using orthogonal polynomials
as approximating functions in the Rayleigh-Ritz (R-
R) method. He showed that the results yielded by
orthogonal polynomials are superior to characteristic
beam functions in the R-R method. However, his con-
clusion was made for a plate made up of conventional
materials and with simple boundary conditions. In this
paper, we have generalized his conclusion to buckling
and vibration of an angle ply symmetric laminated
composite plate with fully elastic boundaries which is
much more general than the case considered by Bhat.
The model that has been studied in this article is shown
in Figure 1 where an angle ply symmetric laminated
composite plate is restrained by rotational and transla-
tional springs on the edges. The material of the plate is
fiber reinforced composite. The laminate is of uniform
thickness h and, in general is made up of a number of
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layers each consisting of unidirectional fiber reinforced
composite material. The fiber angle of the kth layeris #
measured from the x axis to the fiber orientation, with
all lamina having equal thicknesses, (see Figure 1). The
material properties with 1 as index are those calculated
in the fiber orientation and those with 2 as index
have been calculated in the direction perpendicular
to the fiber orientation. In this paper, two different
procedures to construct the approximating functions
have been applied to determine the non-dimensional
critical buckling load and frequency parameter of the
model described earlier, in the R-R method.

CONSTITUTIVE EQUATIONS
The constitutive equations for the composite plate are
expressed in matrix form as:

N A B €
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where A, B, and D are extensional, coupling, and
bending rigidities that are defined as follows:
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where @i stands for elements of transformed reduced
stiffness matrix of the kth layer. The midplane strains
and curvatures are related to the deflections and
transverse shear deformations through the kinematic
relations:
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where w, (), and ¢, are respectively transverse de-
flection and transverse shear forces. 5, and §, are
transverse shear stiffnesses of the plate in z-z and
y-z planes respectively. The plate that has been
considered in the current paper is thin so we may
neglect the in-plane deflections: » and » and so Q,
and @,. Also, the transverse deflection is assumed to
remain constant through the thickness. To relate edge
moments and forces to transverse deflection, we have
used the boundary conditions provided in [2] as:
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Figure 1. The model of the composite plate considered in
this article.
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After some manipulations the non-dimensional rigidi-
ties, R and T', will be appeared in distinguished terms
that enables us to generate a computer code with more
convenient handling on defining these terms as input
data. R and T are defined as R = }L(hf and T = "D’—l”:
Considering that:

pofa o Koo Kb Kb

Dy Dy Dy, Dy,
I{tl (13 I{tg(ls I{t,ibB I{t N b3

Ty=—r—, Thy=——, Ty=—2— Ty=—"—
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and

Ri=Ry=Ri=R,=R

T=Ty =Ty =Ty =T (9)

CONSTRUCTION OF THE
APPROXIMATING FUNCTIONS

characteristic beam orthogonal polynomials
In this paper, two different procedures have been
applied to construct the approximating functions. One
of them was first devised by Bhat [1] and the second has
had a long history of application in vibration problems
{characteristic beam function). Bhat proposed a set
of orthogonal polynomials that was generated by using
a Gram-Schmidt process to determine the frequency
parameter of a plate made up of conventional materials
and with simple boundary conditions in the R-R
method. A procedure similar to what Bhat proposed
in [1] is applied here but with small deviations. In
the work of Bhat, the first member of the orthogonal
polynomials set satisfied both geometrical and natural
boundary conditions where the other members satisfied
just the geometrical boundary conditions but in the
current work the first member of the orthogonal poly-
nomials set only satisfies the four natural boundary
conditions of the corresponding beam problem which
are as Eqgs. (7 and 8). The procedure considered in the
current paper is as follows:

First, we assume a polynomial with five terms as:

Xo(x) = ag +axx + 07’ + azr® + agxt (10)

This polynomial should satisfy the four boundary con-
ditions presented earlier in Eqs. (7 and 8). By replacing
it in the four boundary conditions and determining the
coefficients in terms of one undetermined coefficient as
ag it is reduced to a more simple form as:

Xo(2) = an f(x) (11)

which after normalization has no constant and is
the first member of the orthogonal polynomials set
which can be generated by a Gram-Schmidt formula
as follows:

Xi(z) = (z — B1) Xo(@) (12)
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where W{z) is the weighting function that is set to
unity due to uniform thickness of the composite plate
considered in this paper. For plates of variable thick-
ness, the weight function should be defined properly
[3]. All the members of the orthogonal polynomials set
satisfy the orthogonality condition as follows:

'/01 W(m)Xk(m)X,(mMm:{ . i{f iy } (16)

ag1

The coefficients of the orthogonal polynomials set
are chosen in such a way to make the polynomials
orthonormalized as shown in the following equation:

/1 X (z)dr =1 (17)
Jo

The same procedure can be applied for the Y coordi-
nate.

characteristic beam functions

To construct the characteristic beam functions which
are suitable to be applied in the R-R method for
buckling and vibration analysis of the corresponding
plate, a general form of beam eigenfunction is firstly
supposed as the first member of the approximating
functions set as follows:

Xo(x) = asinh(a,,z) + beosh{a,z) + ccos(w,,x)

+ d sin(a,,x) (18)

Replacing this function in the four boundary conditions
presented earlier, results in an algebraic system of
equations with five unknowns. The determinant of
the coeflicient matrix that here is an expression that
contains ouly ., (one of the unknowns) is zero that
leads us to construct the characteristic equation and
finally determine the remaining unknowns [abed]’
for each eigenmode. It should be noted that each
eigenmode has a special eigenfunction. The novelty
of this procedure would be confirmed when compared
with the complex formulas devised in the existing
literature.

APPLICATION OF THE
RAYLEIGH-RITZ METHOD
In the application of the R-R method, first, the
transverse deflection is represented by a frequency
dependent co-ordinate function as:

M N

wlw,y) =Y > Ciy Xi(@)Y;(y) (19)
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where C;; is the generalized coordinate. The maxi-
mum kinetic energy of the freely vibrating plate with
amplitude w(z,y) and radian frequency w, expressed
in rectangular co-ordinates, is given by:

2
s = phe // wldzdy (20)
=

2

where p is the mass density of the plate material
and the integration is carried out over the entire
plate domain R*. The maximum strain energy of the
mechanical system under study is given by:

Lfm:ax = LTP, max T LTR, max T I]T7 max (21)

where U, jax 15 the maximum strain energy due to
the plate bending and also Ug, wiax and Ur, gax are
respectively the maximum strain energy stored in
rotational and translational springs at the plate edges
and have been given in [7].

In buckling case, the potential energy associated
with the external loading is given by:

a b
U = /O /0 (N,'wi + Nywi + 2N w w , Ydedy
(22)

The total energy functional for free vibration of the
plate is given by:

F= (Jmax - ﬂllax (23)

which is to be minimized according to the R-R method.
The transverse deflection of the plate is expressed
by a set of characteristic orthogonal polynomials or
characteristic beam functions as presented in Eq. 19.
The minimization of the energy functional requires:

a
J Cig

(I]m:ax - 71m:a,)<) = O» 2,] = ] e A/{$ j\/TA (24)

which leads to the governing eigenvalue equation as
followings:

([Ky + Ktme + Kvot] = A [M]) {Ci;1 =0 (25)
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Table 1. The first five frequency parameters of a composite plate (0/90/0) evaluated by using orthogonal polynomials in
Material properties are (G12 / E22 = 0.6, 112 = 0.25). The

values in bracket show the corresponding frequencies evaluated by using beam functions.

the Rayleigh Ritz method for various boundary conditions.

E11/E22 M A1) A2 A3 M A5
R=0
T = co=(SIMPLY SUPPORTED)
10 10.6498 | 10.6500 | 18.6409 | 34.2544 | 36.9938 | 42.5993
20 13.9482 | 13.9500 | 21.7556 | 38.6389 | 51.2066 | 55.7929
30 16.6046 | 16.6100 | 24.4832 | 42.5909 | 62.2556 | 70.2577
50 20.9296 - 29.1865 | 49.5667 | 81.4355 | 83.7187
100 29.0502 - 38.5112 | 63.7577 | 104.2774 | 112.4790
R=250,T =00
10 21.2430 30.2536 | 47.8961 | 54.1982 | 73.0140
20 27.5300 36.2877 | 54.9227 | 7T.7562 | 82.4962
30 32.1890 41.1160 | 60.9090 | 85.6102 | 90.8191
50 39.4027 48,9562 | 71.0377 | 105.9967 | 111.0131
100 52.5191 63.7461 | 90.7381 | 133.5676 | 142.8313
R=0,T=03
10 1.0823 1.5447 1.5459 5.4630 7.6646
20 1.0853 1.5458 1.5464 5.5046 | 8.6132
30 1.0872 1.5464 1.5466 5.5310 | 9.4674
50 1.0893 1.5470 1.5472 5.5654 | 10.9784
100 1.0917 1.5476 1.5480 5.6088 | 14.0630
R=140,T =40
10 10.1927 14.4093 | 16.6413 | 19.9839 | 20.7500
[14.5431] | [16.8516] | [20.0634] | [21.3282]
20 10.6535 14.8697 | 18.7049 | 21.8245 | 21.9081
30 10.9219 15.1672 | 20.2987 | 22.9562 | 23.2781
50 11.2639 15.5878 | 22.6719 | 24.8794 | 25.4908
100 11.9249 16.6207 | 29.8568 | 30.8373 | 33.2558

Table 2. The first five non-dimensional frequency parame-
ters of a composite plate (30/-30/30) evaluated in the Ritz
method by using beam eigenfunctios. Material properties
are (G12 / BE22 = 0.6,v12 = 0.25), R =T = 40.

E11/E22 Al A2 A3 Ad Ab
10 10.1068 14.1895 16.1023 19.5830 22.5617
20 10.5994 14.6444 17.3061 20.8930 24.4090
30 10.8759 14.9426 18.2153 21.9183 26.0417
50 11.2157 15.3502 19.6214 23.6164 28.8045
100 11.6493 15.9688 21.9731 26.9331 33.9034

and Ky, Kipns, Kror and M are defined as below:
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And for biaxial buckling load:
]:A[} mnij E;‘?‘ZLFQ? EQ‘?LF;: (30)



Buckling and Vibration Analyses of Composite Plates with Fully Elastic Boundaries 119

It is emphasized that for uniaxial compression only the
first term is applied. The unfamiliar terms in these
expressions can be evaluated by the following formulas:

1

e _ [ [dXi(@) d°X(2)

0

/ d"Yi(y) &°Y;(y)
T R DR FICD 2
g . ]: d?/r d?/q :l d?j (3‘)

where r,s = 0,1,2. The non-dimensional frequency
parameter and critical buckling load are respectively

as follows:

— 2 J2
Vi=wa A/ F,h2

_ Nga?
=7

NUMERICAL RESULTS
The comparison of the numerical results, achieved in
this analysis and presented in Table 1, shows the
superiority of the orthogonal polynomials over beam
eigenfunctions as they present the lower quantities
for the lower modes. Table 2 presents the numerical
results of vibration analysis of an angle ply symmetric
laminated composite plate with fully elastic bound-
aries. Figure 2 depicts the mode shapes of a composite
plate with classical boundary conditions. Figures 3
and 4 show the convergence of non-dimensional critical
buckling load for a certain composite plate with all
edges clamped. It’s worthy of note that the same
behavior has been observed by Darvizeh et.al. [4] and
also it should be noted that as, Figures 3 and 4 imply,

the analysis performed in this paper can be generalized
to single-layered plates which exhibit more general
characteristics. Table 1 shows the frequency parameter
for various non-dimensional elastic rigidities. In all
buckling cases, material properties are as Ell= 130
GPa, E22=9 GPa, G12=4.8 GPa, vy =0.28. Incon-
sistencies of the results in reference [7] can be revealed
with a more careful look at Table 1.

CONCLUSIONS
In this paper, a new procedure has been developed for
the construction of the approximating functions that
were first applied to a plate made up of conventional
materials and with simple boundary conditions by
Bhat [1]. Although the same procedure has been
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Figure 3. Convergence of non-dimensional critical Buck-
ling load for a single layered composite plate with all edges
clamped, (Beam functions).
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Figure 2. Mode shape depiction of a composite plate with classical boundary conditions.
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Figure 4. Convergence of non-dimensional critical Buck-
ling load for a single layered composite plate with all edges
clamped, (orthogonal polynomials).

devised in other works, but the whole application has
remained obscure by evading a complete description
of the procedure on how to construct the polynomials
and by referring it to Bhat in the existing literature.
Also, beam eigenfunctions have been applied using an
interesting approach that is revealed to be superior
when compared with the complex formulations devised
in [5]. It has been verified that, as Bhat observed, the
orthogonal polynomials vield superior results (lower
quantities) for the lower modes, are simple to construct
and possess the orthogonal property which simplifies
the calculations. Using those try functions that have
been provided by the Gram-Schmidt process defers the
convergence of the R-R method to higher digits for M
and N as supposed in the sigma formulae for deflection
function (w) in the related equation in comparison with
beam eigenfunctions. This is because of point that
just the first member of the orthogonal polynomials
set satisfies the natural boundary conditions where the
other members satisfy only the geometrical boundary
conditions (in classical case) or no boundary conditions
{in elastic boundary conditions case) and this can be
examined by a more careful look at the Gram-Schmidt
formula. It has also been observed that the overall
CPU time consumed to perform the calculations in the

S. Amirahmadi, R. Ansari

procedure to construct the orthogonal polynomials is
about 30 times less than the corresponding time in
the procedure to construct the approximating functions
by using characteristic beam functions and it results
from the simple nature of orthogonal polynomials. For
validation of the results, the non-dimensional rigidities
are set to large numbers as 10° or smallest quantity as
zero that leads us to classical boundary conditions for a
composite plate with more data available in the existing
literature that helps us to rely on the computer code
that was generated to perform the calculations. Also,
the results have been compared with those gained by
Rais —Rohani and Marcellier in [5].
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