JAST, Vol. 6, No. 1, pp 13-23
(© Iranian Aerospace Society, Winter 2009

J.Joumal of Aerospace Science and Technology

A Fast Mesh-Free Galerkin Method for the
Analysis of Steady-State Heat Transfer

S. Forouzan-Sepehr!, S. Mohammadi?®

The element-free Galerkin method is employed for a two-dimensional
analysis of steady-state heat transfer. The unknown response of the system, i.e.
temperature, is approximated using the moving least squares technique. Numer-
ical integration of governing simultaneous system of equations is performed by
Gauss quadrature and new modified nodal integration techniques. Numerical
examples and tests have proved that the new methods remain in an acceptable
level of accuracy while providing less erpensive and much faster approaches.

INTRODUCTION

The finite element (FE) method, though vastly used
in analysis of engineering problems, has some evident
limitations. It requires an appropriate initial mesh to
obtain proper results. Values of derivatives of the field
parameter or system response (e.g. temperature in this
study) have a lower order of smoothness and accuracy
due to local interpolation nature of the analysis, and
finally the data transfer procedure from an old to a new
mesh in an adaptive analysis is a time-consuming and
expensive task.

To overcome the above mentioned limitations,
several mesh-free methods have been proposed by
researchers. The smoothed particle hydrodynamics
(SPH) [1], the element-free Galerkin (EFG) method
[2-5], the meshless local Petrov-Galerkin (MLPG)
method [6], and the reproducing kernel particle method
(RKPM) [7] are among many available mesh-free
approaches. The EFG method, among others, has
less complexity and more efficiency, and has been
successfully employed to solve several engineering prob-
lems such as analysis of plates and shells [8-9], wave
propagation [10], contact mechanics [11], and heat
transfer [12-17], etc. An obvious disadvantage of nearly
all mesh-free methods is in their requirement for far
more CPU time than their FE counterparts, since:

1. Mesh-free shape functions and their derivatives
cannot be derived in closed form formulations, and
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are computationally more complex than the well-
developed FE shape functions.

2. Far more Gauss points are required for Gauss
quadrature integration in mesh-free methods than
in the FE method.

In this article, several numerical integration techniques
have been developed and implemented within the EFG
method together with Lagrange multipliers (to enforce
the essential boundary conditions) for two-dimensional
analysis of steady-state heat transfer.

Several examples simulated by object-oriented
software is specifically developed for this purpose. Nu-
merical examples have been used to assess the perfor-
mance of the method, and to evaluate the quality and
accuracy of the proposed nodal integration techniques.

PARTIAL DIFFERENTIAL EQUATION OF
HEAT TRANSFER AND DISCRETISATION
Quasi-harmonic partial differential equations, generally
expressed as:

aT 92T
VTkVT—FQg—aOTfﬁOEfVOW:O (1)

in a domain ), cover a wide range of engineering
problems depending on the definition of parameters
included in Eq. (1), and therefore can be classified into
four categories:

1. General quasi-harmonic PDE: where 3y # 0 and
Yo # 0, such as in fluid mechanics and damped
wave motions.

2. Helmholtz wave equation: in the case of Sy = 0 and
Yo # 0, such as electromagnetic waves, fluid surface
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waves and compression waves, the general quasi-
harmonic equation yields to a hyperbolic PDE.

3. Transient heat conduction equation: transient heat
conduction, soil consolidation and any other diffu-
sion process can be modelled by a parabolic PDE,
i.e., the case for 3y # 0 and v9 = 0.

4. Steady-state heat transfer equation: an elliptic
PDE (By = 0 and = 0 condition) which
can be used to model steady-state heat transfer,
seepage, irrotational flow of ideal fluids, distribu-
tion of electrical or magnetic potential, torsion of
prismatic shaft, etc. is used in this study with
proper boundary conditions.

On the other hand, the governing equations for a
steady-state heat transfer in a system with domain
and boundary I' (Figure 1) are considered as:

VIkVT + h(Texe = T)+Q =0 ;inQ
(kVT)' ' n—Gg—aT =0 conT, (2)
T=T ;onlp

where T, T°* and T are temperature, its exact
value and specified boundary temperature, respec-
tively, with n as the unit vector normal to the bound-
ary. k = diag[k, k| defines the matrix of conductivity
in terms of its x and y coefficients. h and a are
the conductive heat transfer and radiation coefficients,
respectively. @) is the heat source (rate of heat transfer
per unit volume) and 7 is the specified heat flux on the
boundary (rate of heat transfer per unit area). Eq. (2)
can be implemented in a weak form as:

INT, \) = %/(VT)Tk(VT)de/(hTexH-Q)TdQ

Q Q
1 ) 1 ) }
+5 hT<dQ) + 3 aT=dl + | gTdl
T o T, T,
+/)\(T—T)dl" (3)
T'r
I:
I Q

T
gtoTl

Figure 1. Typical steady-state heat transfer problem.
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where A is the Lagrange multiplier function. After
substituting:

T(x)=T"(x)=®(x)a (4)

A(x) =Ny (x) A (5)

where ® is the matrix of MLS shape functions, N
is the Lagrange interpolation matrix, and T" is the
numerical approximation of temperature. Eq. (3) is
minimised with respect to the unknowns a (vector of
nodal temperatures) and A:

ol (a,\)
d(a,\) =0 (6)

which yields a simultaneous system of equations:

K G a f
o o -{n ) @
The stiffness matrix K and the vector of nodal forces

f are obtained from:

K=K, +K,+K, (8)

f=1f, +fo+1; (9)

where matrices Ky, K;, and K, are related to conduc-
tion, convection and radiation, respectively, and can be
calculated from:

K, = /(V@)Tk(wr-)dﬂ (10)
Q

K, = [ h®T®dQ (11)
/

K, = [ a®T®dl (12)
/

Nodal force vectors f},, fo and £, associated to convec-
tion, heat source and boundary heat flux, respectively,
are defined as:

f, = /hTexti>TdQ (13)
Q

£y = /Q@Tdﬂ (14)
Q

ﬂ:/fﬁwr (15)
rq
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Matrix G and vector f\ are related to the Lagrange
multiplier A\(x) and can be defined as:

G = /<I>TNAd1“ (16)
T'r

f, = /T‘Nw (17)
Tr

The EFG (MLS) shape function matrix ®(x) will be
discussed in the next section. Ny(x) is the matrix
of Lagrange interpolation functions with the Kroneker
delta property:

N)\I (X,]) = 6]] (18)

Two types of strong and weak form error norms
are adopted to evaluate the results of the proposed
approaches:

e -1 )
e () = e

(19)

J1Te (x) = T" (x) | d9
Q

err(T) = (20)

[T (o[ d2
Q
er»(x) and err(T ;) are defined similarly.

THE ELEMENT-FREE GALERKIN
METHOD
Belytschko et.al. [2] introduced the element-free
Galerkin (EFG) method in 1994 based on the concepts
of the moving least squares (MLS) approximation with
the following properties:

e By using MLS approximation instead of interpola-
tion, smoother and more continuous results can be
obtained [16].

e MLS is a local approximation, and as such, is more
accurate than the global least squares [16].

Moving Least Squares Approximation
Lancaster et.al. [17] expanded the least squares global
curve fitting to the local moving least squares approx-
imation. In this method, the field parameter value
(here, temperature) at any point of the system domain
) can be approximated by:

T(x) 2 T" (x) =p" (x)a(x) (21)

where p(x) is the vector of m basis functions,

. . T
p(x)=[1,z,y,2% 2y, v*, ], (22)

and «a(x) is the vector of unknown multipliers as a
function of x. If the values of the temperatures are
described at N nodes x1,Xs,...,Xy as a vector such
as:

a= [Tl, TQ, ...,TN}']TXN (23)
where Tr = T(x7); I = 1, N, Eq. (21) can be rewritten
as:

T (x,x1)=p" (x/)a(x) ;3 I=1N (24)
to locally approximate the field parameter, the un-
known vector a(x) can then be obtained by minimising
the following Ly norm:

J(x) = %Zw (x —x1) (T" (x,x1) — TI)2

= % (Pa(x) —a)" W(x) (Pa(x) —a) (25)

where the matrices Py, and Wy (x) are defined
as:

P]j:p]‘ (X[) H I:LN&]:LW (26)
W(x) = diag [w(x — x)] (27)
I=1,N

respectively. w(x —xy) is a predefined weight function,
and will be explained in next section. Minimising .J(x)
with respect to a(x):

0J (X) = X)o(X) — X)a =

da(x) A(x)a(x) - B(x)a=0 (28)
where

A(x) = PTW(x)P (29)
B(x) = PTW(x) (30)

the vector of unknowns a(x) is obtained as:
a(x) = A7 (x)B(x)a (31)

Substituting Eq. (31) into (21) and comparing it with
Eq. (5) yields:

®(x) = p" (x) A~ (x)B(x) (32)

The MLS shape functions do not possess the Kroneker
delta property:

Or(xy) #0617 (33)
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They only provide an approximate solution, and should
not be considered as interpolation functions. Never-
theless, they satisfy constant and linear consistency
conditions:

N
> ®s(xs)-1=1 . J=1,N (34)
I=1
N
Z@](X])-X]:X] H J:].,N (35)
I1=1

The first derivative set of shape functions are employed
to determine the conductive part of the stiffness matrix:

P, =0%(x)/0x=pLA~'B
+pTA' (Bx—ALAT'B)  (36)

Weight Function

It can be stated that by introduction of the weight
function w in Eq. (25), the MLS method generates
a local robust approximation. The weight function
w(x — X1) is a positive non-zero monotonic decreasing
function in a special sub-domain €; of the system

called the influence domain associated with node x:

_Jw(§) >0 x € Qr
w(x —xp) = { 0 : otherwise (37)
where
ol )
I

It is necessary to define three different sets of sub-
domains related to a system Q (Figure 2):

1. Total Domain of Influence QI associated to any
node I of the system:

Qr = {x: [lx —xs]| < pr} (39)

2. Exact Influence Domain 2; associated to any node
I of the system:

Q]:{XEQ:HX—X[H<p[} (40)

3. Domain of Neighbourhood w! associated to any
point x € Q:

Q;(:{XIEQ:||X—X]||<p1,I:LN} (41)
It is evident that:

Qr=0N0 (42)

Q; (43)

o
I
C=

~
Il

1
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O\ ={LJK,L}
(b)

Figure 2. Typical sets of sub-domains: (a) total and exact
influence domains (b) neighbourhood domain.

N
aclJ (44)
I=1

The MLS approximation is well defined if the matrix
A(x) in Eq. (28) is non-singular. This is achieved
where there are enough non-zero weight functions, or
enough nodes, within the influence domain of each
nodes of the system. Therefore, the domain of influence
of each node:

1. Must be large enough to include enough nodes for
A(x) to be non-zero, i.e.

Nr>m (45)

2. Must be small enough to satisfy the locality be-
haviour of the MLS approximation.

To maintain the above conditions, (p,¢q)r the minimum
required value of the radius of influence domain of each
node I is taken as ||xx — x/|| where x is the m!"
nearest node to node I regardless of the node itself. Its

radius of influence domain p; can then be defined as:

pr = max (ap . (preq)la pmin) (46)

The smoothness of MLS shape function ®(x) is deter-
mined by that of the basis functions and the weight
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function. Let C*(Q) be the space of k" continuously
differentiable function. If w(¢) € C*(Q) and p(x) €
C'(Q), then it can be shown that ®(x) € C™in(k:(Q).

NUMERICAL INTEGRATION
Due to the complexity of the EFG shape functions, it
is obviously impossible to determine the exact values
of integrals constituting the stiffness matrix and the
nodal force vector. Therefore, two categories of nu-
merical integration techniques have been employed to
approximate them:

e Gauss Quadrature Using Background Cells

e Nodal Integration

Condition of the assembled matrix K* = { CIfT E); ]
defined as:

-1
cond (K*) = det (K*) - det (K* ) (47)

and expected to be near 1.0, together with some patch
tests are employed in this paper as means of evaluating
the quality of integration.

Integration by Gauss Quadrature
In this technique, similar to FEM, Gauss points that
are defined in a virtual mesh called background cell
structure (Figure 3) are taken as the sampling points
of the integration.

Therefore, integration of any given function f(x)
in the system domain 2 can be approximated by:

10 = [ s =3 1. (48)
b c

(+1,+1)

X X
X X

XX XXX
XX XXX
X X
X X
X X

AQ) =1 0p;

A 2
A(QJ):an

Figure 4. Definition of area A corresponding to any node
I or J in the nodal integration approach 1.

+141
I.= [ f(x)dQ= [ [ fc(&mn)d&dn
Qe e e (49)
= ; ;qg”fc (&,ny)

where qg is a weighting coefficient associated with the

Gauss point xg,, = [ & ony ]T within the cell ¢:

q?j“ = %u}f“mch Q) (50)
In Eq. (50), w;"® and w}¢ are weight coefficients of the
ng-point Gauss integration rule [18]. Numerical inves-
tigations indicate that while selection of the number
of Gauss points and cells may affect the accuracy of
results, increasing them does not necessarily increase
the accuracy [16]. Some references (e.g. [2]) propose
a background mesh of n. x n. cells, each containing
ng X ng Gauss points:

ne ~ VN (51)

ng ~ VN, +2 (52)

where N, represents the number of nodes within a
cell.  Nevertheless, it is evident that choosing a
suitable background mesh and the number of Gauss
points greatly depend on the order of basis and weight
functions in addition to the nodal arrangement.
Because of locality of EFG shape functions and
their derivatives, finding neighbourhood domain Q, .
of each Gauss point x¢, as an “initial processing” task,
may speed up the main global assembly procedure.

Nodal Integration Methods

Numerical integration using the Gauss quadrature
requires a background mesh comprising of Gauss points
which are usually much more than the number of EFG
nodes N. In order to develop a much faster approach,
researchers have suggested employing only N nodes to
evaluate the integrals [19-20]. Eqs. (48)-(49) can now
be rewritten as:

1= [1eaa =y [ uosei (53)
Q ]_1QI
&,

Duflot et.al. [19] proposed to let the integration weight
function 9 7(x) be the Sheppard shape function, i.e.

w(x —x7)

Vr(x) = BFP(x) = (54)

M=

w(x —x7)

J=1

Though any function satisfying the partitions of unity
condition can be employed as 1;(x), defining the
integration weight function as:

Pr(x) =g 6 (x — x1) (55)
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simplifies Eq. (53) into:

N
I(f) =Y af f(x1) (56)

where ¢% is a portion of total area A(Q) of the
system associated with node I, which means that the
quantities of ¢¥/A(Q) for I = 1, N are partitions of
unity:

N
Z a7 -1
I=1 A(Q)

On the other hand, Eq. (56) leads to an exact result
when f(x) is a constant function, a characteristic
that integration by background cells does not generally
possess.

Belytschko et.al. [20] proposed the following defi-
nitions for ¢$:

(57)

2
¢ = A (58)
> ooy
J=1
or
N
§=3 / B1(x)® 1(x)dD (59)
J:l'Q

where ¢y is assumed to be 1.0 for all x; € Q—T" and 0.25
or 0.5 for x; € T" on a corner or elsewhere, respectively.
In the present study, ¢ is simply defined as:

(60)

where A; is a predefined area corresponding to any
node I. Three cases are investigated and compared
with the Gauss quadrature integration:

1. Approach 1: Similar to the idea of Belytschko
et.al. [20], Ay is defined as (Figure 4):

=

A (QI) = mp?
A(Qr) = 3007

;o x7eQ-T

61
x; €Tl ( )
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Figure 5. Nodal arrangements for the patch test: (a)
regular arrangement (b) irregular arrangement.

2. Approach 2: Eq. (61) may generate a significant
integration error for nodes inside the domain but
very close to the boundary. Therefore, the exact
area of the influence domain of a node can be used
as an alternative to overcome this source of error:

Ar=A(Q) (62)

3. Approach 3: In previous approaches, the area A;
depends only on the influence domain of node I,
i.e. the number of influenced nodes required for a
well-defined EFG shape function; while dependence
of ¢8 on a proper portion of the whole system area
and therefore, on nodal arrangement and distance
between nodes seems to be more realistic and

Table 1. Results of the standard patch test.

Nodes Integrétion Trfl er(x5) é\’: A]/A Q)
Arrangement Technique J=1
Gauss Quadrature 10.000 4.90E-12%
Regular Nodal Integ. Appr. 1 10.000 4.14E-11% 4.909
(Tg™ = 10.000) Nodal Integ. Appr. 2 10.000 4.12E-11% 4.398
Nodal Integ. Appr. 3 10.000 4.06E-11% 0.917
Gauss Quadrature 10.893 7.36%
Irregular Nodal Integ. Appr. 1 11.167 10.06% 7.255
(T§" =10.146) Nodal Integ. Appr. 2 11.123 9.63% 5.874
Nodal Integ. Appr. 3 10.909 7.52% 1.421
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rational. Therefore, instead of taking A as the area
of a circle or sector with the radius py, it is proposed
in this study to take a new radius p; defined as one
half of the average distance between the node I and
its neighbours:

> ==yl

J (XJEQI)
Ny

(63)

[N R

N

Obviously, the value of Y A, obtained in approach
J=1

3 is much closer to the system area A(Q) than other

approaches; therefore, better results are expected for
the integrals.

Finding the influence domain ; of each node I
in nodal integration rules, as an “initial processing”
procedure similar to the Gauss quadrature integration,
may speed up generating the assembled matrix K*
and vector f* = [f f]T of the simultaneous system
of equations.

y/\

S|
4

10.0

v

(b)
Figure 6. Analysis of the square fin: (a) geometry and
boundary conditions (b) nodal arrangement.
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(b)
Figure 7. Analysis of the square fin at y = 0 using FE and
EFG methods with different numbers of Gauss points: (a)
temperature (b) first derivative of temperature.

NUMERICAL STUDIES
The proposed techniques of integration have been im-
plemented within object-oriented software already de-
veloped for two-dimensional steady-state heat transfer
analysis using the EFG method [21]. Several numerical
examples are investigated to assess and compare the
performance of the integration techniques.
A fourth order spline weight function is used for
all numerical examples:

_ 2 3 _ 4 .
we={ 7T A e

Standard Patch Test

The standard patch test in a square domain of dimen-
sion 10.0 x 10.0, as shown in Figure 5, is considered
in two cases: (a) regular nodal arrangement and (b)
irregular nodal arrangement with the exact solution
T (z,y) =z +y.

Satisfaction of the patch test requires that the
value of T" at any interior node be equal to T¢®. Since,
the exact solution is a linear function, a linear basis
function vector (m = 3) is employed in the analysis.
Gauss quadrature integration is performed using a cell
which includes 3 x 3 Gauss points and 2 Gauss points
on any boundary segments. All three nodal integration
approaches are investigated. The scaling factor a,



and the minimum radius of influence domain p,,;, are
taken to be 1.25 and 5.0 for case (a) and 1.5 and
7.0 for case (b), respectively. Computational results
illustrated in Table 1 show the EFG method using
nodal integration techniques passes the standard patch
test with an acceptable level of accuracy.

Square Fin

A square fin of dimension 10.0 x 10.0 which generates
heat internally at a prescribed constant rate (Q = 2.4)
and has zero temperature on the exterior boundaries,
is considered as shown in Figure 6. The thermal
conductive coefficients are assumed to be 2.0 in both
the x and y directions and the radiation coefficient
is taken to be 1.0. No convection takes place in this
example. Because of the symmetry, only one quarter
of the domain is modelled (Figure 6).

The scaling factor o, and the minimum radius of
influence domain p,,;, are taken to be 1.5 and 1.25,
respectively. Quadratic basis (m = 6) is employed
in the analysis. Gauss quadrature integration is per-
formed using 5 x 5 cells, each including ng x ng Gauss
points and 2 Gauss points on any boundary segments.
Results illustrated in Figures 7-8 and Table 2 show the
best accuracy is achieved for Ng = 4. Figure 7 depicts
the analysis results for both the temperature and its
first derivative at y = 0 using FE and EFG methods
with different numbers of Gauss points. In Figure 8,
the relative error at y = 0 was compared for different
numbers of Gauss points. Figure 9 compares results of
temperature value and its derivative at section y = 0
using EFG with different types of integration rules and
FE. Relative errors and the time required to assemble
the matrix K* and the vector f* are illustrated in Table
3. According to Table 3, the assembling CPU time with
nodal integration rules is just about 5 percent of the
CPU time required by Gauss quadrature integration,
though nodal integration techniques have lower yet
acceptable levels of accuracy.
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Figure 9. Analysis results of the square fin at y = 0 using
FE and EFG methods with different methods of integration:

(a) temperature (b) temperature derivative.

Strip Fin
A 6.0x5.0 strip fin subjected to an internal heat source:

Q (z,y) = 2sech® (z — 3) tanh (z — 3) (65)

With the boundary condition given by

T (0,y) = —tanh 3

T (6,y) =tanh3

T,(z,0)=0 (66)
T, (2,05) =0

is considered and modelled as shown in Figure 10.

Table 2. EFG errors and required assembling CPU time of
analysis of the square fin using different numbers of Gauss
points (based on a PIV 3.0 GHz processor).

Total Number of

2 3
x
--------EFGwith 131 Gauss Points ~ —--—- EFG with 22 Gauss Points ~ — - — -~ EFG with 3¢5 Causs Points
— —— -EFCwith 44 Gauss Points EFG with 55 Causs Points - -+ -+ EFC with €06 Gauss Points

—— EFGwith 1010Canss Foints

Figure 8.

Relative error at y =

0 of the square fin

comparing different numbers of Gauss points.

ng  Assembling CPU Time err(T)
Gauss Points
1 14sec 65 542.13%
2 42sec 140 17.76%
3 109sec 265 5.63%
4 172sec 440 3.20%
5 288sec 665 5.60%
6 426sec 940 20.88%
10 1058sec 2540 9.93%
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iH 13 14 ‘15 16 7 ‘18 ‘19

(b)

of the strip fin: (a) geometry (b)

Figure 10. Analysis
nodal arrangement.

The exact solution is:

T (x,y) = tanh (x — 3) (67)
The quadratic basis (m = 6) with the scaling factor
a, = 1.5 and minimum radius of influence domain
Pmin = 1.751s employed in the analysis. Gauss quadra-
ture integration is performed using 8 x 1 cells, each
including 4 x 4 Gauss points within the system domain
and 2 Gauss points on any boundary segment. Table
4 compares assembling CPU time and relative errors
for different integration rules. Numerical results for T'
and T ,, and relative errors are illustrated in Figures
(11)-(12), respectively. Figure 11 depicts the analysis
results for both the temperature and its derivative at
y = 0.25 using FE and EFG methods with different
techniques of integration, while Figure 12 shows the
relative error associated with the mentioned results
in the same section. The proposed nodal integration
technique, though has a lower level of accuracy, yet
it is less expensive than the Gauss integration rule,
and provides better results among the existing nodal
integration approaches.
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(b)
Figure 11. Analysis results of the strip fin at y = 0.25
using FE and EFG methods with different techniques of

integration: (a) temperature (b) temperature derivative.

CONCLUSION
The element-free Galerkin method together with sev-
eral numerical integration approaches categorised as
Gauss quadrature and nodal integration rules have
been successfully developed, and implemented for two-

Table 3. EFG errors and required assembling CPU time of analysis of the square fin using different types of integration

(based on a PIV 3.0 GHz processor).

Integration Method Assembling err(T) % A,,/A (Q) cond(K™)
CPU Time J=1
EFG Gauss Integ. 172sec 3.20% 1.044
EFG — Nodal Integ. Appr. 1 8sec 5.49% 14.703 1.000
EFG — Nodal Integ. Appr. 2 8sec 7.44% 12.292 1.000
EFG Nodal Integ. Appr. 3 8sec 14.10% 2.003 1.000

Table 4. EFG errors and required assembling CPU time of analysis of the strip fin using different types of integration

(based on a PIV 3.0 GHz processor).

Integration Method Assembling err(T) err(T.,) g: AJ/A (Q) cond(K*)
CPU Time J=1
EFG Gauss Integ. 48sec 0.172% 3.819% 0.988
EFG — Nodal Integ. Appr. 1 12sec 0.307% 4.619% 57.727 0.998
EFG — Nodal Integ. Appr. 2 12sec 0.484% 5.659% 13.801 0.994
EFG — Nodal Integ. Appr. 3 12sec 0.248% 4.242% 6.401 0.959
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Figure 12. Relative error at y = 0.25 of the strip
fin comparing different techniques of integration for: (a)

temperature (b) temperature derivative.

dimensional analysis of steady-state heat transfer. La-
grange multipliers have been employed to enforce essen-
tial boundary conditions. Several numerical examples
have been investigated to evaluate the efficiency and ac-
curacy of the proposed approaches. Nodal integration
techniques are much faster than the Gauss quadrature
integration rule although they usually provide a lower
level of accuracy. The nodal integration approaches
presented in this article are expected to perform well
for other similar applications such as transient heat
transfer problems or general quasi-harmonic partial
differential equations, and even lead to much faster
results for three-dimensional problems with a proper
level of accuracy.

Although very fast CPUs are nowadays available,
the saved time using faster analytical approaches can
be used for more important tasks in more complicated
problems such as three-dimensional error estimation
and adaptive analysis of transient heat transfer.
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