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A Fast Mesh(Free Galerkin Method for the

Analysis of Steady(State Heat Transfer

S! Forouzan)Sepehr'- S! Mohammadi+

The element'free Galerkin method is employed for a two'dimensional
analysis of steady'state heat transfer4 The unknown response of the system6 i4e4
temperature6 is approximated using the moving least squares technique4 Numer'
ical integration of governing simultaneous system of equations is performed by
Gauss quadrature and new modi>ed nodal integration techniques4 Numerical
examples and tests have proved that the new methods remain in an acceptable
level of accuracy while providing less expensive and much faster approaches4

INTRODUCTION
The #nite element )FE, method/ though vastly used
in analysis of engineering problems/ has some evident
limitations: It requires an appropriate initial mesh to
obtain proper results: Values of derivatives of the #eld
parameter or system response )e!g! temperature in this
study, have a lower order of smoothness and accuracy
due to local interpolation nature of the analysis/ and
#nally the data transfer procedure from an old to a new
mesh in an adaptive analysis is a time@consuming and
expensive task:

To overcome the above mentioned limitations/
several mesh@free methods have been proposed by
researchers: The smoothed particle hydrodynamics
)SPH, FGH/ the element@free Galerkin )EFG, method
FJ@KH/ the meshless local Petrov@Galerkin )MLPG,
method FNH/ and the reproducing kernel particle method
)RKPM, FQH are among many available mesh@free
approaches: The EFG method/ among others/ has
less complexity and more eRciency/ and has been
successfully employed to solve several engineering prob@
lems such as analysis of plates and shells FS@TH/ wave
propagation FGUH/ contact mechanics FGGH/ and heat
transfer FGJ@GQH/ etc: An obvious disadvantage of nearly
all mesh@free methods is in their requirement for far
more CPU time than their FE counterparts/ sinceY

G: Mesh@free shape functions and their derivatives
cannot be derived in closed form formulations/ and
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are computationally more complex than the well@
developed FE shape functions:

J: Far more Gauss points are required for Gauss
quadrature integration in mesh@free methods than
in the FE method:

In this article/ several numerical integration techniques
have been developed and implemented within the EFG
method together with Lagrange multipliers )to enforce
the essential boundary conditions, for two@dimensional
analysis of steady@state heat transfer:

Several examples simulated by object@oriented
software is speci#cally developed for this purpose: Nu@
merical examples have been used to assess the perfor@
mance of the method/ and to evaluate the quality and
accuracy of the proposed nodal integration techniques:

PARTIAL DIFFERENTIAL EQUATION OF
HEAT TRANSFER AND DISCRETISATION
Quasi@harmonic partial di]erential equations/ generally
expressed asY

rTkrT ^Q ! % T ! & 
'T

't
! ) 

'!T

't!
_ U )G,

in a domain `/ cover a wide range of engineering
problems depending on the de#nition of parameters
included in Eq: )G,/ and therefore can be classi#ed into
four categoriesY

G: General quasi@harmonic PDEY where & "_ U and
) "_ U/ such as in buid mechanics and damped
wave motions:

J: Helmholtz wave equationY in the case of & _ U and
) "_ U/ such as electromagnetic waves/ buid surface
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waves and compression waves/ the general quasi+
harmonic equation yields to a hyperbolic PDE#

A# Transient heat conduction equationC transient heat
conduction/ soil consolidation and any other diDu+
sion process can be modelled by a parabolic PDE/
i!e!/ the case for #  F G and $ F G#

!# Steady+state heat transfer equationC an elliptic
PDE H# F G and $ F G conditionI which
can be used to model steady+state heat transfer/
seepage/ irrotational Jow of ideal Juids/ distribu+
tion of electrical or magnetic potential/ torsion of
prismatic shaft/ etc! is used in this study with
proper boundary conditions#

On the other hand/ the governing equations for a
steady+state heat transfer in a system with domain L
and boundary M HFigure  I are considered asC !"
rTkrT N h HText " T I N Q F G O inL

HkrT I
T
n" Pq " +T F G O onMq

T F PT O onMT

HQI

where T / T ex and PT are temperature/ its exact
value and speciSed boundary temperature/ respec+
tively/ with n as the unit vector normal to the bound+
ary# k F diagTkx kyU deSnes the matrix of conductivity
in terms of its x and y coeVcients# h and + are
the conductive heat transfer and radiation coeVcients/
respectively# Q is the heat source Hrate of heat transfer
per unit volumeI and Pq is the speciSed heat Jux on the
boundary Hrate of heat transfer per unit areaI# Eq# HQI
can be implemented in a weak form asC
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Figure &' Typical steady+state heat transfer problem3

where 3 is the Lagrange multiplier function# After
substitutingC

T HxI #F T h HxI F # HxI a H!I

3 HxI F N% HxI 3 H[I

where \ is the matrix of MLS shape functions/ N%

is the Lagrange interpolation matrix/ and T h is the
numerical approximation of temperature# Eq# HAI is
minimised with respect to the unknowns a Hvector of
nodal temperaturesI and 3C

5XHa2 3I

5 Ha2 3I
F & H]I

which yields a simultaneous system of equationsC&
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The stiDness matrix K and the vector of nodal forces
f are obtained fromC

K FKk NKh NK( H_I

f F fh N fQ N f)q H`I

where matrices Kk/ Kh and K( are related to conduc+
tion/ convection and radiation/ respectively/ and can be
calculated fromC

Kk F

Z
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T
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Nodal force vectors fh/ fQ and fq / associated to convec+
tion/ heat source and boundary heat Jux/ respectively/
are deSned asC
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Matrix G and vector f are related to the Lagrange
multiplier  @xA and can be deCned asD

G E

Z
 T

#TN dF @6GA

f E

Z
 T

HTNT
 dF @6IA

The EFG @MLSA shape function matrix #@xA will be
discussed in the next sectionL N @xA is the matrix
of Lagrange interpolation functions with the Kroneker
delta propertyD

N I @xJ A E $IJ @6NA

Two types of strong and weak form error norms
are adopted to evaluate the results of the proposed
approachesD

eT @xA E

!!T ex @xA T h @xA
!!

jT ex @xAj @6OA

err @T A E

vuuuut
R
%

jT ex @xA T h @xAj& dPR
%

jT ex @xAj& dP @QRA

eT$x@xA and err@T$xA are deCned similarlyL

THE ELEMENT*FREE GALERKIN
METHOD

Belytschko et(al( TQU introduced the element(free
Galerkin @EFGA method in 6OOV based on the concepts
of the moving least squares @MLSA approximation with
the following propertiesD

" By using MLS approximation instead of interpola(
tionX smoother and more continuous results can be
obtained T6GUL

" MLS is a local approximationX and as suchX is more
accurate than the global least squares T6GUL

Moving Least Squares Approximation
Lancaster et(al( T6IU expanded the least squares global
curve Ctting to the local moving least squares approx(
imationL In this methodX the Celd parameter value
@hereX temperatureA at any point of the system domain
P can be approximated byD

T @xA #E T h @xA E pT @xA+ @xA @Q6A

where p@xA is the vector of m basis functionsX

p @xA E
&
6 - x - y - x& - xy - y& - (((

'T
' m

@QQA

and +@xA is the vector of unknown multipliers as a
function of xL If the values of the temperatures are
described at N nodes x'-x&- ( ( ( -xN as a vector such
asD

a E TT' - T& - ((( - TN U
T
' N @QZA

where TI E T @xIA[ I E 6- N X EqL @Q6A can be rewritten
asD

T h @x-xI A E pT @xI A+ @xA [ I E 6- N @QVA

to locally approximate the Celd parameterX the un(
known vector +@xA can then be obtained by minimising
the following L& normD

J @xA E '
&

NX
I('

w @x xIA
)
T h @x-xI A TI

*&
E '

& @P+ @xA aATW@xA @P+ @xA  aA @Q7A

where the matrices PN m and WN N@xA are deCned
asD

PIj E pj @xIA [ I E 6- N \ j E 6-m @QGA

W@xA E diag
I('$N

Tw @x xIAU @QIA

respectivelyL w@x xI A is a predeCned weight functionX
and will be explained in next sectionL Minimising J@xA
with respect to +@xAD

7J @xA

7+ @xA
E A@xA+@xA  B@xAa E D @QNA

where

A@xA E PTW@xAP @QOA

B@xA E PTW@xA @ZRA

the vector of unknowns +@xA is obtained asD

+@xA E A!'@xAB@xAa @Z6A

Substituting EqL @Z6A into @Q6A and comparing it with
EqL @7A yieldsD

#@xA E pT@xAA!'@xAB@xA @ZQA

The MLS shape functions do not possess the Kroneker
delta propertyD

]I @xJ A $E $IJ @ZZA
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They only provide an approximate solution/ and should
not be considered as interpolation functions# Never+
theless/ they satisfy constant and linear consistency
conditions?

NX
I !

@IAxJ B   C  D J C  ! N AEFB

NX
I !

@IAxJ B  xI C xJ D J C  ! N AEGB

The Hrst derivative set of shape functions are employed
to determine the conductive part of the stiIness matrix?

!#x C #!AxBJ#x C pT#xA
 !B

K pTA !
!
B#x !A#xA

 !B
"

AE!B

Weight Function
It can be stated that by introduction of the weight
function w in Eq# AQGB/ the MLS method generates
a local robust approximation# The weight function
wAx ! xI B is a positive non+zero monotonic decreasing
function in a special sub+domain SI of the system
called the inTuence domain associated with node xI ?

w Ax ! xIB C

#
w A%B & U D x " SI
U D otherwise

AEVB

where

% C
kx! xIk

(I
AEWB

It is necessary to deHne three diIerent sets of sub+
domains related to a system S AFigure QB?

 # Total Domain of InTuence YSI associated to any
node I of the system?

YSI C fx ? kx ! xIk * (Ig AEZB

Q# Exact InTuence Domain SI associated to any node
I of the system?

SI C fx " S ? kx ! xIk * (Ig AFUB

E# Domain of Neighbourhood +!x associated to any
point x " S?

S!x C
$
xI " S ? kx! xIk * (I ! I C  ! N

%
AF B

It is evident that?

SI C YSI & S AFQB

S C

N&
I !

SI AFEB

AaB

AbB
Figure &' Typical sets of sub.domains2 3a4 total and exact
in6uence domains 3b4 neighbourhood domain:

S '
N&
I !

YSI AFFB

The MLS approximation is well deHned if the matrix
AAxB in Eq# AQWB is non+singular# This is achieved
where there are enough non+zero weight functions/ or
enough nodes/ within the inTuence domain of each
nodes of the system# Therefore/ the domain of inTuence
of each node?

 # Must be large enough to include enough nodes for
AAxB to be non+zero/ i-e-

NI ( m AFGB

Q# Must be small enough to satisfy the locality be+
haviour of the MLS approximation#

To maintain the above conditions/ A(reqBI the minimum
required value of the radius of inTuence domain of each
node I is taken as jjxK ! xI jj where xK is the mth

nearest node to node I regardless of the node itself# Its
radius of inTuence domain (I can then be deHned as?

(I C max A0+  A(reqBI ! (minB AF!B

The smoothness of MLS shape function !AxB is deter+
mined by that of the basis functions and the weight
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function: Let Ck<=> be the space of kth continuously
diAerentiable function: If w<#>  Ck<=> and p<x>  
Cl<=>C then it can be shown that "<x>  Cmin#k$l$<=>:

NUMERICAL INTEGRATION
Due to the complexity of the EFG shape functionsC it
is obviously impossible to determine the exact values
of integrals constituting the stiAness matrix and the
nodal force vector: ThereforeC two categories of nu(
merical integration techniques have been employed to
approximate themL

! Gauss Quadrature Using Background Cells

! Nodal Integration

Condition of the assembled matrix K R

 
K G
GT 0

!
deSned asL

cond <K > R det <K > " det
"
K 

  
#

<T7>

and expected to be near 6:UC together with some patch
tests are employed in this paper as means of evaluating
the quality of integration:

Integration by Gauss Quadrature
In this techniqueC similar to FEMC Gauss points that
are deSned in a virtual mesh called background cell
structure <Figure V> are taken as the sampling points
of the integration:

ThereforeC integration of any given function f<x>
in the system domain = can be approximated byL

I<f> R

Z
&

f<x>d= #
X
c

Ic <TW>

Figure &' Integration by Gauss Quadrature0

Figure (' De2nition of area AI corresponding to any node
I or J in the nodal integration approach 80

Ic R
R
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f<x>d= R
'(R
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!(

fc<'( )>d'd)

#
nGP
i)(

nGP
j)(

q&cij fc <'i( )j>
<TX>

where q&cij is a weighting coeYcient associated with the

Gauss point xGij
R
(
'i )j

)T
within the cell cL

q&cij R
(
*w

nG
i wnG

j A <=c> <ZU>

In Eq: <ZU>C wnG
i and wnG

j are weight coeYcients of the
nG(point Gauss integration rule [6W\: Numerical inves(
tigations indicate that while selection of the number
of Gauss points and cells may aAect the accuracy of
resultsC increasing them does not necessarily increase
the accuracy [6]\: Some references <e/g/ [^\> propose
a background mesh of nc $ nc cellsC each containing
nG $ nG Gauss pointsL
nc #

p
N <Z6>

nG #
p
Nc _ ^ <Z^>

where Nc represents the number of nodes within a
cell: NeverthelessC it is evident that choosing a
suitable background mesh and the number of Gauss
points greatly depend on the order of basis and weight
functions in addition to the nodal arrangement:

Because of locality of EFG shape functions and
their derivativesC Snding neighbourhood domain ="

xG

of each Gauss point xGC as an `initial processinga taskC
may speed up the main global assembly procedure:

Nodal Integration Methods
Numerical integration using the Gauss quadrature
requires a background mesh comprising of Gauss points
which are usually much more than the number of EFG
nodes N : In order to develop a much faster approachC
researchers have suggested employing only N nodes to
evaluate the integrals [6X(^U\: Eqs: <TW>(<TX> can now
be rewritten asL

I<f> R

Z
&

f<x>d= #
NX
I)(

Z
+&I
or
&I

2I<x>f<x>d= <ZV>

Dubot et/al/ [6X\ proposed to let the integration weight
function 2I<x> be the Sheppard shape functionC i/e/

2I<x> R c
Sheppard
I <x> R

w<x& xI >
NP
J)(

w<x & xJ >

<ZT>

Though any function satisfying the partitions of unity
condition can be employed as 2I<x>C deSning the
integration weight function asL

2I<x> R q
&
I " 7 <x& xI > <ZZ>
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simpli6es Eq# 9:;< into>

I9f<  
NX
I !

q"I f9xI< 9:?<

where q"I is a portion of total area A9B< of the
system associated with node I / which means that the
quantities of q"I $A9B< for I E  % N are partitions of
unity>

NX
I !

q"I
A 9B<

E  9:F<

On the other hand/ Eq# 9:?< leads to an exact result
when f9x< is a constant function/ a characteristic
that integration by background cells does not generally
possess#

Belytschko et)al) MNOP proposed the following de6+
nitions for q"I >

q"I E
cI-

#
I

NP
J !

cJ-#J

!A 9B< 9:!<

or

q"I E

NX
J !

Z
"

QI9x<QJ 9x<dB 9:R<

where cI is assumed to be  #O for all xI " B#S and O#N:
or O#: for xI " S on a corner or elsewhere/ respectively#
In the present study/ q"I is simply de6ned as>

q"I E
AI
NP
J !

AJ

!A 9B< 9?O<

where AI is a prede6ned area corresponding to any
node I # Three cases are investigated and compared
with the Gauss quadrature integration>

 # Approach () Similar to the idea of Belytschko
et)al) MNOP/ AI is de6ned as 9Figure X<>

AI E

#
A
$
YBI

%
E /-#I Z xI " B# S

A 9BI< $E !
#0-

#
I Z xI " S

9? <

9a<

9b<
Figure &' Nodal arrangements for the patch test0 1a2
regular arrangement 1b2 irregular arrangement6

N# Approach *> Eq# 9? < may generate a signi6cant
integration error for nodes inside the domain but
very close to the boundary# Therefore/ the exact
area of the in[uence domain of a node can be used
as an alternative to overcome this source of error>

AI E A 9BI< 9?N<

;# Approach +) In previous approaches/ the area AI
depends only on the in[uence domain of node I /
i)e) the number of in[uenced nodes required for a
well+de6ned EFG shape functionZ while dependence
of q"I on a proper portion of the whole system area
and therefore/ on nodal arrangement and distance
between nodes seems to be more realistic and

Table ,' Results of the standard patch test6

Nodes

Arrangement

Integration

Technique
Th
 

eT 7x 8
NP
J!"

AJ

!
A 7"8

Regular

7T ex
 
 !;&;;;8

Gauss Quadrature !;>;;; ?>@;EB!#C DD

Nodal Integ> Appr> ! !;>;;; ?>!?EB!!C ?>@;@

Nodal Integ> Appr> # !;>;;; ?>!#EB!!C ?>F@G

Nodal Integ> Appr> F !;>;;; ?>;HEB!!C ;>@!I

Irregular

7T ex
 
 !;&!?H8

Gauss Quadrature !;>G@F I>FHC DD

Nodal Integ> Appr> ! !!>!HI !;>;HC I>#JJ

Nodal Integ> Appr> # !!>!#F @>HFC J>GI?

Nodal Integ> Appr> F !;>@;@ I>J#C !>?#!
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rational8 Therefore9 instead of taking AI as the area
of a circle or sector with the radius !I 9 it is proposed
in this study to take a new radius ! 

I de?ned as one
half of the average distance between the node I and
its neighboursB

! 

I C
6

D
 

P
J  xJ !I"

kxI ! xJk

NI

 !"#

Obviously- the value of
NP

J#$

AJ obtained in approach

" is much closer to the system area A 9# than other
approaches: therefore- better results are expected for
the integrals=

Finding the in?uence domain 9I of each node I
in nodal integration rules- as an @initial processingA
procedure similar to the Gauss quadrature integration-
may speed up generating the assembled matrix K!

and vector f! D Ef f#F
T of the simultaneous system

of equations=

 a#

 b#
Figure &' Analysis of the square /n0 1a2 geometry and
boundary conditions 1b2 nodal arrangement8

 a#

 b#
Figure (' Analysis of the square /n at y 9 : using FE and
EFG methods with di?erent numbers of Gauss points0 1a2
temperature 1b2 /rst derivative of temperature8

NUMERICAL STUDIES
The proposed techniques of integration have been imH
plemented within objectHoriented software already deH
veloped for twoHdimensional steadyHstate heat transfer
analysis using the EFG method ELMF= Several numerical
examples are investigated to assess and compare the
performance of the integration techniques=

A fourth order spline weight function is used for
all numerical examplesP

w  &# D

!
M! !&% Q R&& ! "&' : & ' M
S : & " M

 !T#

Standard Patch Test
The standard patch test in a square domain of dimenH
sion MS(S # MS(S- as shown in Figure U- is considered
in two casesP  a# regular nodal arrangement and  b#
irregular nodal arrangement with the exact solution
T ex  x+ y# D xQ y=

Satisfaction of the patch test requires that the
value of T h at any interior node be equal to T ex= Since-
the exact solution is a linear function- a linear basis
function vector  m D "# is employed in the analysis=
Gauss quadrature integration is performed using a cell
which includes " # " Gauss points and L Gauss points
on any boundary segments= All three nodal integration
approaches are investigated= The scaling factor .(
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and the minimum radius of in7uence domain  min are
taken to be ;# < and <#! for case =a> and ;#< and
?#! for case =b>/ respectively# Computational results
illustrated in Table ; show the EFG method using
nodal integration techniques passes the standard patch
test with an acceptable level of accuracy#

Square Fin
A square Kn of dimension ;!!! ;!!! which generates
heat internally at a prescribed constant rate =Q L  !M>
and has zero temperature on the exterior boundaries/
is considered as shown in Figure O# The thermal
conductive coePcients are assumed to be  #! in both
the x and y directions and the radiation coePcient
is taken to be ;#!# No convection takes place in this
example# Because of the symmetry/ only one quarter
of the domain is modelled =Figure O>#

The scaling factor %# and the minimum radius of
in7uence domain  min are taken to be ;#< and ;# </
respectively# Quadratic basis =m L O> is employed
in the analysis# Gauss quadrature integration is per+
formed using < < cells/ each including nG nG Gauss
points and  Gauss points on any boundary segments#
Results illustrated in Figures ?+U and Table  show the
best accuracy is achieved for NG L M# Figure ? depicts
the analysis results for both the temperature and its
Krst derivative at y L ! using FE and EFG methods
with diVerent numbers of Gauss points# In Figure U/
the relative error at y L ! was compared for diVerent
numbers of Gauss points# Figure X compares results of
temperature value and its derivative at section y L !
using EFG with diVerent types of integration rules and
FE# Relative errors and the time required to assemble
the matrixK and the vector f are illustrated in Table
Y# According to Table Y/ the assembling CPU time with
nodal integration rules is just about < percent of the
CPU time required by Gauss quadrature integration/
though nodal integration techniques have lower yet
acceptable levels of accuracy#

Figure &' Relative error at y ) * of the square 0n
comparing di7erent numbers of Gauss points:

=a>

=b>
Figure (' Analysis results of the square 0n at y ) * using
FE and EFG methods with di7erent methods of integration@
AaB temperature AbB temperature derivative:

Strip Fin
A O!! <!! strip Kn subjected to an internal heat source]

Q =x) y> L  sech =x! Y> tanh =x! Y> =O<>

With the boundary condition given by        
T =!) y> L ! tanh Y
T =O) y> L tanh Y
T%x =x) !> L !
T%x =x) !!<> L !

=OO>

is considered and modelled as shown in Figure ;!#

Table -' EFG errors and required assembling CPU time of
analysis of the square 0n using di7erent numbers of Gauss
points Abased on a PIV H:* GHz processorB:

nG Assembling CPU Time
Total Number of

Gauss Points
err6T 7

8 89sec ;< <9 =8>?

 9 sec 89@ 8A=A;?

> 8@Bsec  ;< <=;>?

9 8A sec 99@ >= @?

<  CCsec ;;< <=;@?

; 9 ;sec B9@  @=CC?

8@ 8@<Csec  <9@ B=B>?
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8a9

8b9
Figure &'( Analysis of the strip .n/ 0a1 geometry 0b1
nodal arrangement6

The exact solution is>

T ex 8x" y9 ? tanh 8x @9 8AB9

The quadratic basis 8m ? A9 with the scaling factor
% ? 7&F and minimum radius of inHuence domain
'min ? 7&BF is employed in the analysisJ Gauss quadra(
ture integration is performed using K ! 7 cellsL each
including M!M Gauss points within the system domain
and 6 Gauss points on any boundary segmentJ Table
M compares assembling CPU time and relative errors
for diRerent integration rulesJ Numerical results for T
and T$xL and relative errors are illustrated in Figures
8779(8769L respectivelyJ Figure 77 depicts the analysis
results for both the temperature and its derivative at
y ? T&6F using FE and EFG methods with diRerent
techniques of integrationL while Figure 76 shows the
relative error associated with the mentioned results
in the same sectionJ The proposed nodal integration
techniqueL though has a lower level of accuracyL yet
it is less expensive than the Gauss integration ruleL
and provides better results among the existing nodal
integration approachesJ

8a9

8b9
Figure &&( Analysis results of the strip .n at y 8 9!:;
using FE and EFG methods with di@erent techniques of
integration/ 0a1 temperature 0b1 temperature derivative6

CONCLUSION
The element(free Galerkin method together with sev(
eral numerical integration approaches categorised as
Gauss quadrature and nodal integration rules have
been successfully developedL and implemented for two(

Table -( EFG errors and required assembling CPU time of analysis of the square .n using di@erent types of integration
0based on a PIV I69 GHz processor16

Integration Method
Assembling

CPU Time
err6T 7

NP
J !

AJ

!
A 687 cond6K 7

EFG < Gauss Integ> ?@Asec C>ADE FF ?>DGG

EFG < Nodal Integ> Appr> ? Jsec K>GLE ?G>@DC ?>DDD

EFG < Nodal Integ> Appr> A Jsec @>GGE ?A>ALA ?>DDD

EFG < Nodal Integ> Appr> C Jsec ?G>?DE A>DDC ?>DDD

Table .( EFG errors and required assembling CPU time of analysis of the strip .n using di@erent types of integration
0based on a PIV I69 GHz processor16

Integration Method
Assembling

CPU Time
err6T 7 err6T"x7

NP
J !

AJ

!
A 687 cond6K 7

EFG < Gauss Integ> GJsec D>?@AE C>J?LE FF D>LJJ

EFG < Nodal Integ> Appr> ? ?Asec D>CD@E G>M?LE K@>@A@ D>LLJ

EFG < Nodal Integ> Appr> A ?Asec D>GJGE K>MKLE ?C>JD? D>LLG

EFG < Nodal Integ> Appr> C ?Asec D>AGJE G>AGAE M>GD? D>LKL
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3a4

3b4
Figure &'( Relative error at y ) *!+, of the strip
1n comparing di7erent techniques of integration for: ;a<
temperature ;b< temperature derivative>

dimensional analysis of steady*state heat transfer" La*
grange multipliers have been employed to enforce essen*
tial boundary conditions" Several numerical examples
have been investigated to evaluate the e@ciency and ac*
curacy of the proposed approaches" Nodal integration
techniques are much faster than the Gauss quadrature
integration rule although they usually provide a lower
level of accuracy" The nodal integration approaches
presented in this article are expected to perform well
for other similar applications such as transient heat
transfer problems or general quasi*harmonic partial
diFerential equations. and even lead to much faster
results for three*dimensional problems with a proper
level of accuracy"

Although very fast CPUs are nowadays available.
the saved time using faster analytical approaches can
be used for more important tasks in more complicated
problems such as three*dimensional error estimation
and adaptive analysis of transient heat transfer"
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