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Optimum Design of Filament-Wound
Laminated Conical Shells for
Buckling Using the Penalty Function

M. Z. Kabir!, A. Rojhani Shirazi’

Optimum laminate configuration for minimum weight of filament—wound lam-
inated conical shells subject to buckling load constraint is investigated. In the
case of a laminated conical shell, the thickness and the ply orientation (the
design wvariables) are functions of the shell coordinates, influencing both the
buckling load and its weight. These effects complicate the optimization problem
considerably. The first level of complexity is attributed to the correlation
between the volume and the buckling load and their dependence on the fiber
configuration. The second level of complexity is associated with the high
computational cost involved in calculation of the buckling load. Thus, the main
objective of this study is to solve the optimization problem as well as to reduce
the computational cost associated with it. Based on the characteristic buckling
behavior of laminated conical shells, the usual penalty function method is used.

NOMENCLATURE [L] Coefficients of the linear operator
4% Weight of the shell. (Lij = Lji)-
[A],[B],[D] Stiffness matrices. N Axial force.
P Specified buckling load. N, Lateral force.
p Mass density. 3 (M)
n L .
|4 Volume of the shell. 3 2m o
, - =2 COS Q.
+6{" Fiber orientations. (AR1+f2) . e i .
it t t i
S Longitudinal coordinate in the cone w1, ot Hprrndes to be determimed for eac
surface mode (m,n).
urface.
Sh Longitudinal coordinate at the small (ai; = a;i) ~Submatrices identified from the
end of the cone. eigenvalue problem.
H Thickness of the layer at the small end. o(x,r) Penalty function.
a Cone semi-vertex angles. S.F Safety factor.
{N}T Membrane force vectors.
{M}" Bending moment vectors. ) INTRODUCTI_ON )
_ ) Multi-layered angle—ply composites are important
Q] L;.meafed trf'msformed reduced structural materials in a number of areas of engineer-
stiffness matrix. ing, namely in aerospace, civil and mechanical engi-
{A} Displacement vector. neering. Laminated conical shells are usually used as
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a connection between two cylindrical shells of different
diameters. The main goal is then minimization of the
weight of the structure under the constraint of carrying
the applied load. The design variables are usually the
fiber orientations and the thickness.
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In the case of a shell of laminated composite mate-
rial, unlike an isotropic conical shell, the thickness and
the material properties vary with the shell coordinates,
which ultimately results in coordinate dependence on
stiffness matrices (A, B, D).

The calculation of the “exact* buckling load of a
laminated conical shell, taking into account the vari-
ation of the stiffness coefficients, requires an analytic
representation of these functions, depending on many
factors such as the manufacturing process, variation
of the ply angle, and the change in the thickness of
the shell (see Baruch, Arbocz & Zhang [1,2]). In
addition, calculation of the buckling load by solving
the system of non linear governing partial differential
equations with variable coefficients complicates the
problem considerably. As far as the authors know, the
only work that has been done to calculate the exact
buckling load with consideration of variation of the
stiffness coefficients is that of Goldfeld and Arbocz [3].
The buckling loads were calculated by means of the
computer code STAGS- A [4] by adding a user written
subroutine WALL.

Unlike a laminated cylindrical shell, in the case
of a laminated conical shell, due to the variation of
thickness and ply orientation with the shell coordi-
nates, the volume of the shell is also dependent on the
ply configuration. Thus, for optimization, both the
buckling load (usually, the constraint) and the weight
of the laminated conical shell (usually, the objective
function) are strong functions of the ply configuration
(the design variables). Also the fiber orientation and
the thickness of the conical shell are strong functions of
the shell coordinates, and cannot be taken as nominal
values. This complicates the optimization procedure
significantly.

Furthermore, since the structural analysis is based
on variable stiffness coefficients, high computational
cost is involved in calculating the buckling load.

The only work that deals with the optimization
of a laminated conical shell is that of Brown and
Nachals [5]. The design objective was to tailor the
stiffness and thermal expansion characteristics of the
composite to achieve maximum strength. The design
variables were the ply orientations. Dependence of
the material properties on the shell coordinates was
approximated by taking them piecewise constant along
the axial direction. That led to no consideration of the
dependence of the weight of the shell on the chosen ply
orientation.

In this work, a preliminary investigation was
made into the characteristic buckling behavior of lam-
inated conical shell; it was found that unlike the
case of buckling of plates and cylindrical shells, the
buckling load curve (load versus an appropriate shell
parameter) of laminated conical shells with cone semi—
vertex angles a > 10° are smooth and convex. There is
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no discontinuity in the slope of the buckling load curve
due to change in the circumferential wave number. This
behavior is typical of the buckling of conical shells ( see
Goldfeld, Sheinman and Baruch [6] for buckling curves
of isotropic conical shells). Thus, the penalty function
technique can be an effective procedure in solving the
optimization problem of a laminated conical shell for
buckling.

To summarize, the objective of this study is to
develop an adaptive penalty function to obtain the
minimum weight of filament—wound laminated conical
shells subjected to buckling load constraint by opti-
mizing the laminate stacking sequence (ply orientation
angles and thickness).

PROBLEM DESCRIPTION
Laminated conical shells are usually used as a connec-
tion between two cylindrical shells of different diame-
ters. Thus, the shell geometry is assumed to be given
data, as well as the applied load, and the optimization
problem will be formulated as the minimization of the
weight W of the shell under the constraint of specified
buckling load P* (given as the applied load including
an appropriate knock down factor):

Minimize:

(1)

Subject to:
P (6, 40 1)) > pr

Where p is the mass density and V' is the volume of the
shell. The design variables are the fiber orientations
19?)7 and the thickness tgi) at the small end of the
shell for each layer (7).

Design Variables

In the present work, a laminated conical shell made by
means of a horizontal helical filament winding machine
and a conical shell mandrel is considered. Using a
geodesic path (the shortest distance between two points
on a surface) to represent the fiber orientation leads to
the following effects (see Baruch, Arbocz and Zhang
[1,2] and Goldfeld and Arbocz [3]):

e Variable ply angle along the axial coordinate (con-
stant in the circumfernatial direction), the ply angle
being larger at the small end:

, S ;
6()(S) = arcsin <Sl sin 95 )> (2)
o Where 6! is the fiber orientation of the (i) ply
at the small end of the shell (951):0 is defined
as the fiber in longitudinal direction), S is the

longitudinal coordinate in the cone surface, and Sy
is the longitudinal coordinate at the small end of the
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cone, see Figure 1. In this work, the investigation
focuses on ply orientations in the range of j:é)gz) =
0° to 80°. In the case of a fiber orientation of
90°, a different procedure must be used, and the
assumption of a geodesic path is no longer valid.
The fiber orientation and the thickness then remain
constant along the axial direction. In that case,
therefore, the buckling load can be calculated on
the basis of constant stiffness coefficients. That case
is not treated here.

e Variable thickness #() for each layer along the
axial coordinate (constant in the circumferential
direction) is:

) (1)
t(i)(,e) _ tgz)S] cos 0;

(3)

scosf(?)

where ty’) is the thickness of the layer at the small end.
Since the volume of fiber across each specific cross—
section along the axial direction must remain constant,
the thickness of each layer at the small end is larger

than that at the large end.

Objective Function — Volume of a Conical Shell
The variation of thickness in the axial direction implies
that the volume of the shell is also a function of the fiber
configuration. The volume V of a conical shell can be
expressed as:

V= / o (S) (5 ds (4)
where
r(S) = S.sina (5)

Substituting Eq. (2) into Eq. (3) and putting the result
with Eq. (5) into Eq. (4) one obtains, after some

Figure 1. Geometry and sign convention for coordinates
and the position of a fiber on a conical shell.

trigonometric manipulation:

V= ZW.Rlztgi)cos 05” [\/ s2—s2.sin 299 — 81 CO8 OY)}
i=1
(6)

Constraint — Buckling Load

Variation of thickness and material properties with
the shell coordinates ultimately results in coordinate
dependence of the stiffness matrices (A, B, D). Under
the classical laminate theory, Jones [8] and Whitney
[9], the constitutive equation reads:

N A B |e

=15 o) % @
Where {N}T = {Nss7N99-,N30}&{M}T =
{Mss, Mgy, Mo} are the membrane force and bending

moment vectors. The coefficients of the elastic stiffness
matrix are given by:

M=

A= P [Q]k(tk —tr_1)
B % 0,2 -1 ) (8)
D=15 [0 - )

k

Il
-

[A], [B] and [D] are, respectively, the membrane,
coupling and flexural rigidities, and [Q]; the laminate
transformed reduced stiffness matrix of the k-th layer.
The winding angle 6 of a conical shell depends on the
winding process and is a function of the longitudinal
coordinate S, see Eq. (2), which ultimately influences
the [Q]; matrix. Furthermore, the thickness of a lamina
also changes in the longitudinal direction, see Eq. (3).
Therefore, the [A], [B] and [c¢] matrices are strong
functions of S. This leads to calculating the buckling
load by solving a system of non linear governing
partial differential equations with variable coefficients.
In this work, the buckling loads are calculated through
the classical shell theory.
Classical shell theory (C.S.T):

{A} = {Uo,’l)(],wO}T

o? 02
Lt =A== + Ags =
11 11 027 + Aes o2
Lis = (Ais + Agg)—2— = L
12 = (A2 66 D010ms 21
93 a3 Ap O
Lis=—-Bi1-——=(B 2Bes) = =5 + ——=—— =1L
13 11 8:10?( 12 + 66)&71310% o on 31
o? 02
Loy = Agg=—= + Ass—=
22 66 022 + Aao 922
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93 93 Ay O
Lys=—(B124+2Bgg) =g — Boo—— + —2 =
23 (B2 + 66)8.2?%8.7?2 22 o773 o 07y 32
o4 ot
L3z = D1 — + 2(D;: 2D¢g) ———
33 11 Bt +2(Dy2 + 66)(%%83:3
ot ( ~ Bm> 9? Ass
4Dy + (N 272 24 222
" 0af p ) ozt p?
BQQ 62
2353 (9)
p 0T,
Ly Ly Lz Ug 0
La1 Los Laz| |vo| = |0 (10)
Lz1 L3z L33| |wo 0
(L] {A} = {0} (11)
Uy = U7 COS Bnx1 COS BT
Vo = v1 8in B, 21 sin B, T2 (12)
wo = w1 Sin Bpx1 oS BT
N = AN
PO (13)
Ny = ANy

(a11a22a33+a12a33a13+a13012023)

N2 + Nof2) =
( 1ﬂn Qﬂm) +)\(a11a22_a%2)

B (ana%g + a‘ZQa%g + aszaiy) (14)
+A(ar1a2 — aly)

(@11 = —(A1182 + Ags32))
a12 = a1 = (A2 + Aes)(Bm Bn)
ars = ag1 = B1182 + (Bia + 2Bsg) (5%, 6n)
2A1>
+ (P2+P1) Bn
aze = —(Age82 + A22/3%,)
a23 = aza = — (Bi2 + 2Bgg) (Bm/32)
+Boo 33, + (,iATQZI) Bm
D134 + 2(D1s + 2Dg6 ) (52, 85) + Do 30, +

aszz = — .
= G )

(p2+p1) p2+p1
(15)

Boundary Conditions

A combination of boundary conditions may be assumed
to exist at the edges of the shell. Here we classify these
boundary conditions for simply supported (SS1 SS2
SS3 — SS4) filament—wound, truncated circular conical
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shells. The simply supported boundary conditions of
the shells considered are:

Ug = u0($1 ) IQ), Vo = UO(Il 7$2)7

wo = wo(21,22), $1 = ¢1(x1,22) = — (8100) ;

8I1
B2 = da(w1,22) = — <8w0> ,

EES
Ny = Ni(21,22) = Ni1, N2 = No(21,22) = Nao
Ng = Ng(w1,22) = N12 = Noy
My = M1(9U1,£L“2) = Mn
My = Ms(w1,22) = May
Mg = Mg(x1,22) = M1z = My
SS1:wg=M; =¢3 =Ny =Ng =0
S552:wg =My =¢3=ug=Ng=0
S583:wg =M =¢2=N; =v9=0
SS4:wyg =M =¢s=ug=v9=0

In Figure 2, the axial compressive bucking loads
of angle — ply CFRP (carbon fiber reinforced plas-
tiC, E11:97.5GP37 E22:8.3GPa, G12:4.1GP3 and
V12=0.32, Tong [10]) laminated conical shell a = 45°,
R1=0.2m, L=0.4m, SS3-SS4) are given for different
angle ply orientations with a thickness t;=2 mm |,
(R1/t1)=100 at the small end of the shell. It is seen
that in general the larger the ply angle, the lower the
buckling load. The reason for this is the rapid reduction
in thickness along the longitudinal direction of the
shell with increasing ply angle, see Eq. 3. For small
ply orientation (up to about #; = 30°) the buckling
load slightly increases, but not significantly since the
variation of the angle ply has a more dominant effect
than reduction in thickness. However, for larger ply
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Figure 2. Axial compressive buckling load of laminated
conical shells (v = 45°) with ¢t1 = 2mm, Nyger[£0 = 0°] =
29.130 kN /m.
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angles the reduction in thickness is the dominant effect,
and the buckling load decreases. Moreover, in those
cases the volume of the shell decreases and at the same
time the buckling load increases, leading to an optimum
design configuration.

To summarize, both the buckling load (the con-
straint), and the weight of the laminated conical shell
(the objective function) are strong functions of the
fiber configuration (the design variables). Also the
fiber orientation and the thickness of the conical shell
are strong functions of the shell coordinates. This
complicates the optimization procedure significantly.
Furthermore, since the structural analysis is based on
variable stiffness coefficients, high computational cost
is involved in calculating the buckling load.

OPTIMIZATION PROCEDURE

Before starting with the optimization procedure, a
preliminary investigation was made to determine the
characteristic behavior of the buckling load with regard
to the volume as a function of the ply orientation. In
Figure 3, the axial compressive buckling loads are plot-
ted against the angle ply (£6;) for CFRP laminated
conical shells (o =45°, Ry =0.2m, L =04m, S54),
all having the same volume (V = 680 c¢m?). To obtain
the same volume for all shells, each configuration has
a different thickness at the small end of shell. It
appears that for a specific volume of shell, one can
gain a 30% increase in buckling load by changing the
ply orientation. Furthermore, the buckling curve in
Figure 3 is smooth and convex in the neighborhood
of the maximum buckling load, and has only one
maximum. For a different shell volume, 80% smaller
than the previous one, the axial compressive buckling
load was also calculated and is plotted by the dashed
line in Figure 3. It is seen that the buckling loads
have the same characteristic behavior at both volumes.
Furthermore, the maximum buckling loads of both
shells occur at the same ply angle (£6; = 50°). In
Figure 4, buckling loads of the same shell with cone
semi—vertex of a = 15°,30°,45° and 60° are plotted
against ply - angle (£6). It is seen that all buckling
load curves have the same characteristic behavior, the
curves are smooth and convex in the neighborhood of
the maximum buckling load. The relative difference
between the maximum and minimum buckling loads
decreases as the cone semi — vertex angle increases.
Furthermore, as the cone semi — vertex angle increases,
the optimum ply angle also increases.

As was shown previously, the volume of the cone
is calculated by a simple equation, Eq. (4). How-
ever, calculation of the buckling load involves high
computational cost. A change in volume is made by
varying the ply orientation and/ or the ply thickness.
Every alternative demands calculation of the buckling

load (since it is not known if the current configuration
satisfies the buckling load constraint).  Therefore
several calculations of buckling load are required for
each change in volume. Calculation of the buckling
load is the most expensive in this problem. Thus, the
main goal of the optimization procedure is to reduce
the number of buckling load calculations and at the
same time to obtain the global extreme.

In the present work, the process is divided into
two main stages. First the maximum buckling load
is found for some volume that satisfies the buckling
load constraint in an initial ply configuration, using an
adaptive penalty function technique. Thus, an alter-
native optimization problem is solved; maximization
of the buckling loads for a certain volume. This is
to say the buckling load is calculated only once for
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Figure 3. Axial compressive buckling load of laminated
conical shells (o = 45°) with constant volume.

(a) V =544 cm® : Nyger[£60 = 0°] = 7.670 kN/m,

(b) V =680 cm? : Npwer[£0 = 0°] = 12.493 kN/m.

0.4 \ \ \
0 20 40 60 80
+6,
Figure 4. Axial compressive buckling load of laminated
conical shell with constant volume (V = 680cm?).
(a) a =15° : Npger[£61 = 0°] = 39.927 kN/m,
(b) @ = 30° : Nypger[£61 = 0°] = 21.437TkN/m,
(c) @ =45° : Npger[£01 = 0°] = 21.43TkN/m,
(d) @ =60°: Npger[£61 = 0°] = 7.384 kN/m.
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each ply configuration with the given volume, and
expensive and unnecessary calculations of the buckling
load are avoided. For each configuration, the thickness
is determined by the volume constraint. After the
maximum buckling load, as described above, has been
found, the thickness of the layers is then decreased to
reduce both the volume of the shell and the buckling
load.

Adaptive Penalty Function Technique

The selection of the function used for the penalty
method has a major influence on the accuracy of the
approximation.

minf(l‘) = f(617t1) = _pcr(elvtl)
subject to: (16)
g(z) = g(b1,t1) =V(b1,t1) —v* <0

¢(x,r) = f(x) + rlog[—g(x)] (17)

01 061 - 18
B 28Gin) _ dslohn _ (18)

{A: t9¢a(ww) — 98((01,t1),r) _
oty

It is worth mentioning that, in order to show
the superiority of the adaptive penalty function with
respect to the existing approaches as cited in reference
[13], Table 2 compares the computational cost among
them.

CONCLUSION
In this study, an optimization procedure for filament
- wound, laminated conical shells under buckling con-
straint is proposed. In the case of a laminated conical
shell, the buckling load and the weight of the shell are
functions of the ply configurations, which in turn are
functions of the shell coordinates. This complicates

Table 1. Optimum configuration for maximum buckling
load subject to specific volume.

r o7 t] ®” fr Per
10° 26.5241 0.7862 -22.6855 | -24.6623 24.6623
1071 27.3641 0.8653 -25.57199 [-27.49679 27.49679
1072 |30.02361 0.9786 -32.53048|-32.54895 32.54895
1073 |32.08145 1.12481 -38.92684 (-38.92823 38.92823
10~* |33.23421 1.44736 [-51.29407(-51.29417 51.29417
107° 34.6152 1.4986 -54.70307|-54.70308 54.70308
Ref.(13)| 35 (deg) |1.531 (mm) 55.647 (kN/m)

Table 2. Computational cost.

o Number of calculation cycles
Response | Hook and Jeev’s|Steepest Penalty
surface method ascent function
(Ref.13) (Ref.13) (Ref.13) |(current study)
30 26 12 12 6
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Table 3. Optimum configuration for minimizing the
volume with p* as a buckling load constraint.

s

P 3 Per
a(de 01 (de t1 (mm)|V (em
(deg) (EN/m) 1 (deg) |t1 (mm)|V (em?) (kN fm)
30 45 34.6152 1.250 168.370 | 45.6284

the optimization procedure significantly; first, the
correlation between the volume and the buckling load
has to be taken into consideration, and second high
computational cost involved in the calculation of the
buckling load has to be reduced. Thus, based on
the characteristic buckling behavior of a laminated
conical shell, a special optimization procedure has been
developed.

From the results presented, the following conclu-
sions can be drawn:

e The characteristic buckling behavior of a laminated
conical shell with respect to change in ply orienta-
tion for different volumes (indirectly thickness) is
similar.

e Fiber orientation has a significant influence on the
buckling load. The relative difference between the
largest and the smallest axial compressive buckling
loads can reach beyond 30% just by changing the
ply orientation.

e The volume of the shell (indirectly called the thick-
ness) has a major effect on the buckling load, a slight
reduction in volume leading to significant reduction
in buckling load.

e An adaptive penalty function technique is an effec-
tive procedure for optimization of laminated conical
shells for buckling; it gives low cost with rapid
convergence to the global optimum.

e The optimum fiber orientation for a laminated
conical shell under axial compression increases as
the cone semi — vertex increases. Usually the outer
ply angle is larger than the inner.
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