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Construction of Hexahedral Block Topology

and its Decomposition to Generate Initial

Tetrahedral Grids for Aerodynamic Applications

S. S. Bahrainian®

Making an initial tetrahedral grid for complex geometry can be a tedious and
time consuming task. This paper describes a novel procedure for generating
starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are
arranged around an aerodynamic body to form a flow domain. Each of the
hezahedral blocks is then decomposed into siz tetrahedral elements to obtain an
initial tetrahedral grid around the same aerodynamic body. This results in an
algorithm that enables users to produce starting tetrahedral grids for a variety of
aerodynamic bodies. To construct an initial starting tetrahedral grid suitable for
computational flow simulations, representing a solid surface geometry (fuselage
or a wing section) attached to a plane-of-symmetry, a topology containing at
least 5 hexahedral blocks is required. The resulting initial starting grid consists
of 30 tetrahedral cells with 74 faces and 16 vertices, which is the same number
of wvertices as for the hexahedral blocks. A face-based global data structure is
then produced for the tetrahedral cells. To represent multiple surface definitions
a topology containing mine hexahedral blocks is required. When decomposed, the
nine hexahedral blocks, produce a tetrahedral grid consisting of 54 cells and 2/

vertices.

INTRODUCTION

Unstructured grid generation is a powerful computa-
tional tool used in the numerical modeling of physical
phenomena on complex, irregular domains. Instead
of requiring a uniform distribution of grid points, un-
structured meshes allow grid points to be strategically
placed in the computational domain. Thus, these
grids are particularly effective in modeling irregular
boundaries, multi-scale surface geometries, and rapidly
changing solutions [1].

Unstructured grid technology has the potential
to significantly reduce the overall user and CPU time
required for CFD analysis of realistic configurations.
To realize these potentials, improvements in automa-
tion, anisotropic grid generation, adaptation, and
integration with the solution process are needed [2,
3]. Unstructured grid generation has advanced to the
point where generation of a grid for most configuration
requires only a couple of hours of user time. However,
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prior to grid generation, the CAD geometry must be
prepared. This process can take anywhere from hours
to weeks. It is the single most labor-intensive task
in the overall simulation process. Much of this time
is spent on repairing gaps and overlaps. Geometry
preparation often may include further preparation in
grouping of multiple surface definitions. Alternative
procedures for surface grid generation which account
for small gaps and overlaps and generate across mul-
tiple surfaces can minimize and potentially eliminate
much of the geometry preparation. With improvements
in the geometry preparation process, the overall grid
generation task can be more fully automated. This can
include automatic specification of appropriate element
size, at least, for a given class of configurations.

Much research has been done to design sequential
algorithms and techniques to effectively use triangular
or tetrahedral unstructured meshes in the solution of
large-scale applications [4, 5, 6]. Similar algorithms are
developed for quadrilateral and hexahedral elements [7,
8]. Unfortunately, many of these applications cannot
take advantage of an automated surface grid generation
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technique because of a lack of widely available software
tools on surface grid generation architectures. This
paper describes an essentially automated procedure for
the development of initial starting tetrahedral grids ap-
plicable to aerodynamic configurations. The approach
taken here is to construct hexahedral [9] blocks around
a solid geometry to fill-up a computational domain and
then to decompose each block into six tetrahedral cells.
The resulting tetrahedral initial grid is then refined
using an unstructured grid generator with geometry
treatment (movement) capability.

The algorithm governing the block topology and
its consequent decomposition of hexahedral cells into
tetrahedral elements can designate whether the gen-
erated tetrahedral faces are surfaces or interior faces.
This enables the algorithm to generate a suitable global
face-based data structure that can be used by the
grid generator. Thus, users can avoid the tedious
and labor-intensive task of generating initial surface
representation of the solid geometry. This procedure
was used to generate numerous computational starting
grids applicable to aerodynamic geometries.

Many researchers have taken a similar approach to
the automatic generation of two-dimensional triangular
cells around aerodynamic bodies [10, 11, 12]. In their
work, a crude representation of the solid geometry
and the flow domain is made by connecting a few
edges. Figure 1 shows a sample initial starting grid for
the automatic generation of two-dimensional triangular
cells.

To construct an initial tetrahedral grid, a more
complicated approach must be taken. Since an initial
tetrahedral mesh employs several vertices, edges, and
faces scattered in space, an automatic method is
required to construct the initial tetrahedral grid.

INITIAL TETRAHEDRAL GRID
Construction of an initial starting grid with tetrahedral
cells cannot be performed manually as in the case of two
dimensions, where an initial grid can be constructed
by connecting a few edges. This is due to two reasons.

Figure 1. Typical initial starting grid for two-dimensional
grid generation.
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Figure 2.
dimensional grid generation.

Sample initial starting grid for three-

First, it is very difficult to arrange a set of vertices
in three-dimensional space that would represent a
set of tetrahedral cells, which represent a complex
geometry. Second, the connectivity matrix for such
a grid involves numerous vertices, faces, and cells that
have to be defined (numbered) in a specific manner
with respect to each other. For these reasons, it is
obvious that alternative approaches must be considered
when constructing an initial tetrahedral grid. An
analogous initial starting grid for three-dimensional
grid generation is illustrated in Figure 2. This may
not be the case with many grid generators that start
with a two-dimensional surface grid. Here, both surface
and field grids are refined simultaneously, therefore it
is essential to start with an initial tetrahedral grid.

One approach is to construct hexahedral blocks
around the solid geometry to fill-up a computational
domain and to then decompose each block into six
tetrahedral cells. For example, to generate an initial
grid around a solid geometry representing a circular
cylinder or a wing section attached to a plane-of-
symmetry, 5 hexahedral blocks are required. This
approach has been used to generate three-dimensional
initial grids suitable for numerous aerodynamic ap-
plications. The hexahedral block topology and its
consequent decomposition into 6 tetrahedral cells, is
incorporated in a computer program, and can produce
initial starting grids for various aerodynamic configu-
rations.

The simplest block topology is that of a single
block. Although a single block, when decomposed
into tetrahedral cells, does not constitute a suitable
grid for aerodynamic applications, it is the basis for
the decomposition of higher number arrangements of
hexahedral blocks.

SINGLE BLOCK TOPOLOGY
Hexahedral blocks, as opposed to cubes, can have
an unlimited number of shapes as long as they have
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six non-coplanar sides. Each side of an irregular
hexahedral block can be made to fit a solid boundary
while the other five sides can take almost any size and
shape. Therefore, by arranging the sides of irregular
hexahedral blocks around a prescribed solid geometry,
and extending the opposite sides to a prescribed do-
main, a hexahedral grid can be obtained. This is very
convenient since the eight vertices of each block lie on
the surface geometry or the outer-boundary where the
prescribed coordinates are known.

A single hexahedral block can be decomposed
into six tetrahedral elements. Figure 3 shows the
arrangement of tetrahedral cells that are decomposed
from a single hexahedral block. Although, the inten-
tion is to do this for irregular hexahedral blocks, for
simplicity and illustrative purposes, a regular block is
decomposed. The six decomposed tetrahedral cells,
shown in Figures 3 (a) to (f), constitute an initial
tetrahedral grid. Examples of the final grid output
for this initial grid will be given later in this paper.
Here, for consistency, important notes as a result of
the decomposition are pointed out.

By examining Figure 3 (I), it can be seen that
this grid contains 18 faces, 8 vertices, and 6 cells.
The number of resulting faces and their relation to
one another is the concern of the grid generator, as
they constitute the face data connectivity. The 18
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Figure 3. Decomposition of a single hexahedral block into
six tetrahedral elements.
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Figure 4. Five hexahedral blocks surrounding a cubical
space representing a fuselage or a wing section attached to
a plane-of-symmetry, where: (a) through (e) show block
arrangements and (f) shows a view through the plane-of-
symmetry.

faces referred to can be divided in two categories,
12 outer-boundary faces and 6 interior faces. The
6 interior faces are very important since adjacent
tetrahedral cells share each one. The main objective
of the block topology and their decomposition into
tetrahedral cells is to provide grid connectivity for these
faces, which would otherwise not be possible to obtain
easily by hand. This is especially true when a more
realistic domain containing a higher number of block
arrangements is considered. To illustrate this point, a
topology containing 5 hexahedral blocks is discussed in
the following section.

FIVE BLOCK TOPOLOGY
To construct an initial starting tetrahedral grid suit-
able for computational flow simulations, a topology
containing at least 5 hexahedral blocks is required. For
aerodynamic applications to represent a solid surface
geometry (fuselage or a wing section) attached to a
plane-of-symmetry, an initial solid volume within a
domain is required. It is then the grid generator’s job,
among others, to change the shape of the initial solid
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Figure 5. [Initial tetrahedral starting grid from a 5-

hexahedral block topology,: (a) original 5-block hexahedral
cells, (b) some blocks are removed to show triangular grid
faces, (c) plane-of-symmetry grids, (d) solid surface grids,
(e) plane-of-symmetry and surface grids surrounded by
interior cells (not shaded), and (f) outer-boundary grids.

volume to that of the final geometry (i.e. wing shape).
This initial solid volume may take any shape as long as
its coordinates lie on the geometry of the final shape.

For illustrative purposes, a simple cubical box is
selected as the initial solid surface volume and five
hexahedral blocks are arranged around this box. The
topology for the five-hexahedral blocks is shown in
Figure 4. By examining the irregular hexahedron
shown in Figure 4 (a), it is evident that two sides of
the hexahedron are parallel with the x-y plane. One of
these parallel sides constitutes a rectangular face of the
surface geometry and the other constitutes an outer-
boundary face. Similarly, Figure 4 (b), in which two
hexahedral blocks are arranged together, shows two of
the faces of the solid geometry. By arranging the other
hexahedral blocks, as shown in Figure 4 (c), 4 (d), and
4 (e), all of the five faces of the cubical solid surface
geometry are constructed with the sixth face lying on
the plane-of-symmetry. To better examine the initial
solid surface geometry, Figure 4 (f) shows a view of the
block topology through the plane-of-symmetry.

Each of the hexahedral blocks would now have

S. S. Bahrainian

to be decomposed into six tetrahedral elements as
described in the previous section. By doing so, an
initial starting tetrahedral grid is obtained. Figure
5 shows the initial starting grid of tetrahedral cells
and their relation with respect to the original 5-
block hexahedral topology. Figure 5 (a) shows the
original block topology already displayed in Figure 4
(e). By removing some of the hexahedral blocks, the
tetrahedral grids can be viewed and are displayed with
relation to the remaining hexahedral blocks as shown
in Figure 5 (b). This initial starting grid consists of 30
tetrahedral cells with 74 faces and 16 vertices, which
is the same number of vertices as for the hexahedral
blocks.

In addition to decomposing hexahedral cells, the
block topology algorithm can designate whether the
generated tetrahedral faces are surface or interior faces.
When coupled with the face type character of a global
data structure used in many grid generators, this
feature can further categorize the face for a specific
geometry treatment. As a result, the 74 triangular
faces of the tetrahedral cells can be further assigned
to represent various face types. There are, in this
case, & plane-of-symmetry faces shown in Figure 5 (c),
10 surface geometry faces shown in Figure 5 (d), 46
interior faces shown in Figure 3 (e), and 10 outer-
boundary faces shown in Figure 5 (f). Aside from
the 46 interior faces, all other faces that lie on the
surface geometry or the outer-boundary can further
be defined for a variety of geometry considerations.
Table 1 shows a set of geometry considerations and
their designated face types applicable to aerodynamic
applications. An integer value can be assigned to each
grid face to designate the type of geometry treatment
the face should receive.

The grid connectivity data can now be con-
structed and the various tetrahedral faces can be
arranged as shown in Table 2.

Each row of the connectivity matrix contains the
necessary information associated with each face. For
example, face number 8 belongs to cell 0 and is shared
by cell 21 and its space coordinates are defined by
vertices 12, 13, and 16. The face type 4 designates
that this face is a surface face and its refinement should

Table 1. Various geometry treatments and designated face
types.

Face Geometry Treatment Face type

imilar to bott of
Plane-of-symmetry Similar to both surface 1

or outer-boundary faces

Outer-boundary None 2
Interior None 3
Wing surface 4

Wing tip 5

Surface Fuselage 6

7

Pylon
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consider the appropriate cubic spline or equation of
geometry. In this case, as shown in Table 1, this
corresponds to the wing surface geometry.

It should be noted that all of the grids referred to
in this section have been generated for the sole purpose
of illustration and the outer boundary to surface ratios
are greatly exaggerated. The actual initial starting
grids have a much larger outer-boundary to surface
ratios (i.e. of the order of 30/1). To obtain a more
realistic initial starting tetrahedral grid suitable for
aerodynamic applications, there is no need to perform
all of the operations discussed above. Rather, the
coordinates of the 16 vertices, defining the location of
faces and cells in space, can simply be modified to suit
the problem at hand. For example, the eight vertex
coordinates that define the solid geometry, shown in
Figure 5 (d), can be changed to obtain an initial
grid for variety of three-dimensional solid geometries.
Similarly, the eight vertex points associated with the
outer-boundary faces that constitute the overall size of
the three-dimensional flow domain, shown in Figure 5
(f), can be altered to give any domain size of interest.

In fact, this initial grid with some modification of
the vertices and face types has been used to generate
numerous computational grids applicable to aerody-
namic geometries. As an illustrative example, the
following section describes the refinement of this initial
grid.

GRID REFINEMENT
There are two issues that should be addressed about
grid refinement. One is the way that grid cells are
selected for refinement. The other is the actual geomet-
rical procedure used to subdivide the tetrahedral cells

Table 2. Initial starting tetrahedral grid data connectivity.

I NC1 NC2 NV1I NV2 NV3 type

1 0 5 10 13 9 4
2 0 6 10 14 13 4

o] 21 12 13 16 4

0 27 13 14 15 5
10 0 28 13 15 16 5
11 0 2 10 9 1
12 0 3 10 1 2 1
18 0 24 12 4 1 1
19 0 3 2 1 5 2
20 0 4 2 5 6 2
28 0 30 5 8 7 2
29 1 6 10 5 14 3
30 3 2 10 1 3
31 4 1 10 5 3
73 28 21 16 13 3
74 25 22 16 5 8 3

Figure 6. Initial starting grid for a cubic section attached
to a plane-of-symmetry.
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Figure 7. Final grid output of the cubic section grid after
10 cycles of refinement.

and the various surface geometry considerations. In the
case of three-dimensional tetrahedral grids, there are a
number of strategies for cell subdivision [13]. The most
suitable methods attempt to ensure smoothness of the
enriched grid (cf. Rivara [14]). In the present work,
triangular faces of tetrahedral cells are subdivided. By
subdividing a face of a tetrahedron, a new triangular
plane perpendicular to the subdivided face is created
within the cell, which splits the tetrahedron cell in
two halves. Therefore, grid refinement criteria must
consider the size and shape of triangular faces.

Both surface and interior field grid-faces were
subdivided simultaneously in the same manner. To
illustrate this sequence of grid generation, Figures 6 to
8 show the refinement for a sample three-dimensional
grid. A simple cubic configuration (shown in red)
attached on one side to a plane-of-symmetry (shown in
green) and bounded by a larger cubic domain (shown
in blue) was selected for illustrative purposes only. The
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section.

Close views of final Grid output for a cubic
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interior field cells occupying the space between the
small cubic surface and the outer boundary faces are
not shown here.

Figure 6 shows the initial starting grid with 74
triangular faces forming a total of 30 tetrahedral cells.
In fact this is the same initial grid that was discussed in
the previous section, shown here with a better view of
the solid surface. Ten refinement cycles are needed to
reach the final grid output shown in Figure 7. The final
grid consists of 16520 vertices and 83382 tetrahedral
cells. These cells are formed by 4608 surface faces, 1942
plane-of-symmetry faces, 472 outer-boundary faces,
and 163253 interior faces giving a total of 170275
triangular faces. This grid was formed in a relatively
small domain for illustration and no geometry changes
were considered.

The highly stretched skewed faces present in the
initial grid have disappeared or at least are far away
from the solid surface boundary after 10 refinement
cycles. Close views are shown in Figure 8 to allow
examination of the grid faces on the solid surface.

An important point to bear in mind while ex-
amining these grids is that the edges shown on the
surface and plane-of-symmetry grid faces, are actually
edges of one or many interior faces sharing that edge.
The interior grid cells are not shown in the illustrative
sequence of grid refinement for two reasons. One is
the fact that they would cover the surface grids and
would not allow viewing of the surface geometry. The
second reason is the difficulties involved in the post -
processing of large grid data, that is inherent in three-
dimensional unstructured grid generation.

The interior field grids usually account for more
than 90 percent of the total grid cells. This ratio gets
worse as the outer-boundary increases for aerodynamic
applications which require an outer boundary to wing
chord ratio of at least 10 to 30. An attempt to show
some of the interior cells was taken by cutting a slice
through the domain near a side of the cubic section,
and is shown in Figure 9.

SURFACE GEOMETRY TREATMENT
The main objective of this paper is to describe the
procedures involved in topology of hexahedral blocks
for the generation of starting tetrahedral grids. More-
over, as a secondary objective, this section was added
to show the final application of the tetrahedral grids as
applied to aerodynamic configurations.

A more realistic refinement of the initial grid is
obtained when the cubic section geometry is treated
to represent an aerodynamic body. In this case,
computational grid output for the ONERA M6 wing
attached to a plane-of-symmetry and surrounded by
interior and outer boundary cells is produced. The grid
generation procedure is outlined by Figure 10.
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Figure 9. Final grid output showing a slice through the
interior cells.

Figure 10. Computational grid output for the ONERA
M6 wing AR = 3.8, where: (a) (b), and (c) show the initial
grid while (d), (e), and (f) show the final grid.
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The triangular faces of tetrahedral cells that fall
on geometry surface shown by Figure 10 (¢} are treated
in the same manner as the interior faces, with some
modifications to the algorithm. These modifications
are essentially due to the way the surface faces are
defined in the data connectivity matrix.

All of the faces that lie on the plane-of-symmetry,
solid boundary and outer-boundary that may require
geometry treatment (movement) are subdivided using
a surface face subdivision approach developed to treat
solid geometry. Fach of these faces can be further
designated to represent a specific three-dimensional
geometric surface. In this case, the coordinates of
the new node are translated to a new location on the
prescribed ONERA M6 wing geometry. This point
movement is shown in Figure 10 (d), where the newly
generated vertices now lie on the prescribed surface
geometry.

The space coordinates of a new surface geometry
node is found through various means. Depending on
the geometry shape, nodes are translated by means
of empirical equations or cubic spline routines that
match the geometry. For basic three-dimensional
body shapes, this is done by selecting a point on the
geometry that has the shortest distance along a radius
of curvature. To automate the geometry movement, a
library containing subroutines that can handle many
body shapes, has been implemented in the program.
The wing geometry subroutines are designed to be able
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Figure 11. Final shape of the ONERA M6 wing and close

views of the surface grids near the wing tip.
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Figure 12. Nine hexahedral blocks surrounding two
cubical spaces representing a wing-fuselage attached to a
plane-of-symmetry, where: (a) through (d) show hexahedral
block arrangements around the wing and (e) through (i)
show five additional blocks representing the fuselage, plane-
of symmetry, and the outer-boundary topology.
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to handle single and multi element wings with taper,
sweep, and tip considerations.

To examine the final geometry of the ONERA M6
wing as a result of geometry treatment, Figure 11 shows
the final wing shape and close views of the surface grids
near the wing tip.

The five hexahedral block topology discussed in
this section is not adequate if additional surface geome-
tries have to be considered. The following section will
describe the procedure when an initial grid containing
more than one surface geometry element is required.

NINE BLOCK TOPOLOGY
The sample initial grid produced in the previous
section, with some modification of vertices, can be
used to generate grids around a number of different
body shapes. These shapes include circular cylinder,
elliptic section, hemisphere, and numerous single wing
sections. However, initial starting grids for multiple
element airfoils, a combination of wing-fuselage, or a
wing-pylon configuration require more hexahedral cells.
For each additional body element, four new hexahedral
blocks must be added to the hexahedral blocks of the
previous section (i.e. 5 blocks). The nine hexahedral
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block topology and their consequent decomposition
into tetrahedral cells are similar to that of a 5-block
topology, and are illustrated by the grids shown in
Figure 12.

For example, to construct an initial grid for a
wing section attached to a fuselage and bounded by
plane-of-symmetry or outer-boundary grids, the sides
of four hexahedral blocks are arranged to form the
solid wing geometry. This is shown in Figures 12
(a) to 12 (d), where a cubic solid body is formed as
a result of arranging four hexahedral. By examining
the topology shown in Figure 12 (d), one can see
that the four surrounding hexahedral blocks form a
cubic solid surface. This solid surface can represent
a wing panel or any other body shape. To attach
this wing panel to another geometry representing a
fuselage, the five original hexahedral blocks, shown in
Figure 4, are arranged around the topology of Figure
12 (d). By doing so, a nine-block hexahedral topology
is constructed. The arrangement of the five original
blocks around the topology of Figure 12 (d) is shown
by means of Figures 12 (e) through (i).

The overall solid body formed by the nine-block
hexahedral topology now represents a wing section
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Figure 13. [Initial tetrahedral starting grid from a 9-
hexahedral block topology, where we have: (a) plane-of-
symmetry grids, (b) solid surface grids, (c) surface fuselage
representation (d) surface wing representation (e) interior
grids, and (f) outer-boundary grids.
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Figure 14. Sample grid output using 9-block initial data,
where we have: (a) initial grid showing plane-of-symmetry
and surface faces, (b) initial grid showing outer-boundary
grids, (c) final grid output, (d) a close view near the plane-
of-symmetry and surface faces, (e) final grid showing the
outer-boundary faces.

attached to a fuselage. To use this topology as an initial
starting tetrahedral grid, the hexahedral blocks have to
be decomposed into tetrahedral elements.

When the nine-hexahedral blocks are decomposed
into tetrahedral elements, an initial tetrahedral start-
ing grid results with 54 cells, 130 faces, and 24 vertices.
Again, the number of vertices remains the same as the
number of vertices of the 9-block topology. This initial
starting grid is shown in Figure 13 where the grids of
various face types are plotted separately for ease of
comparison with the previous initial grid (i.e. Figure
5). The various face types include 8 plane-ol-symmetry
faces shown in Figure 13 (a), 26 surface geometry faces
shown in Figure 13 (b), 86 interior faces shown in
Figure 13 (e), and 10 outer-boundary faces shown in
Figure 13 (f) giving a total of 130 triangular faces. The
surface geometry faces differ from the previous initial
grid in that they represent two body shapes. The first
one represents a fuselage and contains 16 faces and
is shown in Figure 13 (c). The second body shape
represents a wing panel with 10 triangular faces, and
is shown in Figure 13 (d).

Although, the 9-block initial grid differs from that
of the 5-block topology, there are many similarities.



Hexahedral Block Topology to Generate Initial Tetrahedral Grids 89

For example, the number of plane-of-symmetry faces
and outer-boundary faces in both cases remains the
same. This is due to the fact that the same 5-block
topology, constructing plane-of-symmetry or outer-
boundary, has been used for both cases. The number
of vertices and their three-dimensional coordinates re-
main the same when hexahedral blocks are decomposed
into tetrahedral elements.

The initial starting tetrahedral grids that are
shown in Figure 13 were constructed by decomposing
a topology containing 9 hexahedral blocks. This initial
grid can be used to generate computational grids for a
number of two element bodies. However, for the sake
of continuity and illustrative purposes, these grids were
refined without modifying the outer-boundary vertices
and without surface geometry considerations. The final
refined grid results for this sample initial grid are shown
in Figure 14, where the surface faces represent two
distinct geometry elements.

CONCLUSION

The construction of an initial starting tetrahedral grid
made the use of hexahedral block topology and their
consequent decomposition into six tetrahedral cells.
Hexahedral blocks were arranged around the geometry
with one face on the solid surface and the opposite face
on the outer-boundary to fill a domain. The blocks
were then decomposed into tetrahedral cells to form an
initial starting grid. Five hexahedral blocks were used
to generate an initial grid containing 30 tetrahedral
cells and 74 faces. This initial grid was used to generate
several computational grids addressed in the present
work.

Unstructured grid technology has the potential
to significantly reduce the overall user and CPU
time required for CFD analysis of realistic configura-
tions. To realize these potentials, improvements in
automation procedures, anisotropic grid generation,
flow adaptation, and integration with the solution
process are needed. Unstructured grid generation has
advanced to the point where generation of a grid for
any configuration requires only a couple of hours of
user time. However, prior to grid generation, solid
surface geometry must be prepared using CAD software
or other graphics media. This process could take any-
where from hours to weeks for complex geometry. It is
the most labor-intensive task in the overall simulation
process.

Different approaches are used by researchers to
overcome the difficulty of generating a suitable mesh
around a complex geometry [3, 5. However, in
their work, a very well definition of surface geom-
etry is first produced and then extended to three
dimensions. Here, both surface and field grids are
generated simultaneously, and there is no need for a

well definition of the solid surface prior to volume grid
generation. This novel feature of the current work
enables the grid generator to become one step closer to
full automation. The present approach adopts a very
crude initial discretisation of the solid surface and the
outer-boundary. Surface and field grids of increasing
resolution are then generated simultaneously as the cell
subdivision process continues.

Another novel feature of the developed program
for the automatic generation of three dimensional
unstructured grids is its ability to produce acceptable
grids for complex configurations in a reasonably short
CPU time without extensive use of grid quality mea-
sures. The grid generation algorithm selects the largest
face of each cell and in turn the largest edge of the
selected face for subdivision. This, inherently, controls
the overall quality of the grids that are produced.

Three-dimensional unstructured cells can take
various geometrical body shapes. These shapes include
a tetrahedron with four faces and six edges, various
hexahedral elements with six faces and twelve edges, or
any higher order geometrical shape. The objective of
the present work is to develop algorithm making use of
hexahedral blocks to generate initial tetrahedral cells.
This algorithm was developed to eliminate the labor-
intensive surface grid generation performed by CAD
software.

Hexahedral blocks represent irregular cubes, and
can have an unlimited number of shapes as long as they
have six non-coplanar sides. A single hexahedral block
can be decomposed into six tetrahedral elements. The
resulting tetrahedral elements may have a poor quality
because they are a function of the original hexahedral
shape. Further refinement of badly shaped tetrahedral
elements and their geometry consideration is the task
of the grid generator. Unstructured grid generators
can move a grid point to match a specific solid surface
geometry while enhancing the cell quality.

Each side of an irregular hexahedral block can
be made to fit a solid boundary while the other five
sides can take almost any size and shape. Thus,
by arranging the sides of irregular hexahedral blocks
around a prescribed solid geometry, and extending the
opposite sides to a prescribed domain, a hexahedral
grid can be obtained. The eight vertices of each block
can be made to lie on the surface geometry or the outer-
boundary where the prescribed coordinates are known.

Five hexahedral blocks were arranged around a
solid body to represent a flow domain. The outer-
boundary faces forming the flow domain can be set to
match many prescribed geometries without any com-
plications. This is because the movements of vertices
defining the outer-boundary faces do not coincide with
vertices of any other face. To increase the overall
domain size, one can simply change the coordinates
of the vertices defining the outer-boundary faces.
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To generate an initial grid for a multi element
aerodynamic body, nine-hexahedral blocks are re-
quired. When the nine-hexahedral blocks are decom-
posed into tetrahedral elements, they result in an initial
tetrahedral starting grid with 54 cells, 130 faces, and
24 vertices. Again, the number of vertices remains the
same as the number of vertices of the 9-block topology.
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