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Numerical Simulation of Partial
Cavitation over Axisymmetric Bodies:
VOF Method vs. Potential Flow Theory

I. Rashidi!, H. Moin?, Mohammad P. Fard® and Mahmoud P. Fard*

A computational study of partial cavitation over azisymmetric bodies is
presented using two numerical methods. The first method is based on the VOF
technique where transient 2D Navier-Stokes equations are solved along with
an equation to track the cavity interface. Next, the steady boundary element
method (BEM) based on potential flow theory is presented. The results of the
two methods for a disk cavitator are compared with each other and with those
of the available experiments and analytical relations. The two methods are then
used to predict the partial cavity over an axisymmetric body consisting of o disk
cavitator followed by a conical section and ending in a cylindrical shape. The
effects of various parameters such as cone length, cone angle, cavitator radius
and cylinder diameter are investigated. The results show that as the cone length
increases, the cavity region covers a larger portion of the body. Reducing the
cone angle increases both the length and diameter of the cavity region. For an
azisymmetric body with a larger radius the cavity detachment is more likely to
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NOMENCLATURE

English symbols:

Body force acting on the fluid per unit
volume (N/m?)

Potential function

Gravitational acceleration (m/s?)
Normal vector

Pressure (Pa)

Volume flow rate (m?/s)

Component of axisymmetric
coordinates
Mass transfer sink term
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s Arclength along a meridian

t Time (s)

v Velocity vector (m/s)

z Component of axisymmetric

coordinates
Greek symbols:
Total velocity potential
Disturbance velocity potential
Viscosity (Kg/m.s)
Poppet angle (degrees)
Density (Kg/m?)

Cavitation number
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Subscripts:

Body

Cavity interface
Drag force
Liquid

Vapor
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detachment point of the cavity
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s Ambient

INTRODUCTION
The cavitation phenomenon is known as liquid va-
porization that occurs whenever the liquid pressure
falls below its vapor pressure. This phenomenon is
categorized with a nondimensional parameter called
cavitation number, which is defined as:

P, -P,
V3

(1)

g =

where P, is the vapor pressure, p the liquid density, and
P, V. are the ambient pressure and inflow velocity,
respectively. The cavitation regimes are classified into
incipient-, shear-, cloud-, partial- and super-cavitation
depending on the cavitation number [1]. The cavitation
occurs around axisymmetric bodies at points where the
local pressure drops to the environment vapor pressure.
Any sudden change in the body shape may cause a
pressure rise or fall and, therefore, may be an incep-
tion point for cavitation. Although super-cavitation
decreases drag forces extensively, when maneuvering
of the vehicle is necessary, partial cavitation is more
preferable [2]. Also, partial cavities are widely used in
ventilated systems [2, 3].

During the last decades, numerous studies have
been performed in cavitation using various methods
[1]. Cavitation models based on the Navier-Stokes
equations emerged in early 1990’s. These models are
divided into two main categories: interface tracking
method and homogeneous equilibrium flow [1, 4]. In
interface tracking method, a constant pressure (vapor
pressure) is assumed for the cavity region and a wake
model is used to predict the shape of the cavity
in adaptive grids. In the second category, used in
this study, the density field is estimated by various
models from which the method based on single-fluid
modeling has been shown to be more accurate [1]. In
this approach, an advection equation for liquid (or
vapor) volume [raction is solved and the density is
computed according to the volume fraction of the two
phases. This approach has been widely applied to
simulate cavitation. The selection of an appropriate
mags transfer model and an algorithm for advection
equation are the main issues. Yuan et.al. [5] suggested
a cavitation model based on Rayleigh relation. Singhal
et.al. [6], Merkle et.al. [7] and Kunz et.al. [8] have used
different mass transfer models based on semi-analytical
equations. A well-known method to solve the advection
of a free-surface such as a cavity interface is the VOF
technique. Frobenius and Schilling [9] as well as
Wiesche [10] used this technique to simulate cavitation
over hydrofoils and pump impellers. A review of
the reported literature reveals that VOF method can
accurately capture cavity shape and characteristics. In

this study, a modified VOF technique based on Youngs’
PLIC algorithm [11] is combined with a mass transfer
model of Kunz et.al. [8] to simulate cavitation.

A different type of model used by many re-
searchers for studying cavitation is Boundary Element
Method (BEM). Early research based on this technique
in partial-cavitation flows was performed by Varghese,
et.al. [2], but they used BEM to solve potential flow
for arbitrary bodies after Hess and Smith [12]. Non-
linear BEM method was developed for cavitating flows
around hydrofoils by Uhlman [13, 14], and Kinnas and
Fine [15, 16]. They distributed sources and normal
dipoles along the solid body-cavity interface. The
unknown values of these sources and dipoles were de-
termined by imposing the dynamic condition on an as-
sumed cavity boundary. The kinematic boundary con-
dition was then used to update the cavity shape. Be-
ginning in 1994, two numerical hydrodynamics models
were developed for axisymmetric supercavitating high-
speed bodies: a slender-body theory model (Varghese
et.al. [17]) and a BEM method (Kirschner et.al. [18];
Uhlman et.al. [19]). The results of both the slender-
body theory and the BEM method have been shown to
compare well with other numerical and experimental
results. These models can predict the shape and
length of cavity, accurately. The BEM method was
employed to examine supercavitating flows past disk as
well as cone and sigma-shaped cavitators, where good
agreements with experimental and analytical results
have been reported [20].

In this paper, partial cavitation for water flows
over axisymmetric bodies is studied using two general
types of models mentioned above. For the VOF
method, a modified Young’s PLIC algorithm is used to
advect the interface between the two phases (cavity).
For the BEM method, sources and normal dipoles
are distributed along the body-cavity surface. The
unknown values of the source and dipole strengths
are then obtained using the mixed Fredholm integral
equation that results from the application of Green'’s
third identity.

NUMERICAL METHODS
The two methods of VOF and BEM are briefly dis-
cussed in this section. The VOF method is based on
the solution of the full Navier-Stokes equations along
with an equation for the advection of cavity interface.
The BEM method, however, is based on the concept
of potential flow theory. For the VOF method, the
fluid flow is assumed to be Newtonian and laminar. In
this study, the main focus is on Supercavitation, where
the cavity closes in the liquid. For this phenomenon,
turbulence effects are not important. Experimental
studies also show that the effects of turbulence are
mainly in the cavity closure region and in the shear
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flow outside the cavity [1]. Turbulence intensity is
increased at the end of the cavity where the reentrant
jet is formed; this region, therefore, is turbulent. The
flow inside the cavity, however, is laminar. As a
result, flow turbulence mainly affects the transient
behavior of partial cavitation and the inception of
cavitation. In studying the steady behavior of axisym-
metric supercavities that closes inside the liquid region
rather than on a solid wall, the turbulence is only a
second order effect that will not change the numerical
solution in general. A manifestation of this point is the
good agreement that will be shown later in this paper
between the results of the numerical model with those
of the experiments.

Volume-of-Fluid Method (VOF)

In this method, the advection of the cavity interface is
simulated based on the Volume-of-Fluid (VOF) tech-
nique along with a cavitation model for mass transfer
between the two phases of liquid and vapor.

VOF Algorithm
The governing equations for the 2D/axisymmetic in-
compressible fluid flow are:

V.V =0 (2)
AV o oo 1o 1o 1=
—+V.(VV):——VP+—V.F+— y+d  (3)
ot p p p

where V is the velocity vector, P indicates the pressure,
F} is body force acting on fluid, ¢ is the acceleration
due to gravity and 7 represents Newtonian viscous
stress tensor. In VOF, the phase change boundary is
simulated by a scalar field f, whose value is equal to
zero in the vapor phase and one in the liquid. When a
cell is partially filled with liquid, f has a value between
zero and one. The discontinuity in f is propagating
through the computational domain according to:

af _ of
dt ot
where S is the cavitation mass transfer sink term. This
equation with different mass transfer models can be
used to simulate many physical phenomena such as
cavitation, vaporization, and condensation. The Hirt-
Nichols [21] and Youngs-PLIC [11] methods are widely
used for the advection of the volume fraction f in Eq. 4.
Although the Hirt-Nichols has been used in most cavity
simulations, in this study a more accurate method of
Youngs is employed. To begin the advection using Eq.
4, an intermediate value of f is introduced as:

+VNf=5 (4)

f=fr =6tV (Vi (5)
and “divergence correction” completes the scheme:
il = F 6t (VV)F™ + 5H(S™) (6)

This scheme initiates the distribution of f for velocity
and pressure calculations in each time step. Because
a single set of equations is solved for both phases,
mixture properties are used as:

p=fp,+ (1= flpw
p=fu,+ (1= fu, (7)

where subscripts [ and v denote the liquid and vapor,
respectively.  Two-step time projection method is
employed for the solution of momentum equations.
First an intermediate velocity is calculated based on the
terms related to advection, viscosity and body forces:

—‘7” e ]. = ]. —
=—VVV)"+ =V.7+§"+—F) 8
5 V(VV) +anT+g +pn b (8)

=

Continuum Surface Force (CSF) method [22] is used to
treat the surface tension in interfacial cells as a body
force. Pressure field is obtained by Poisson equation
as:

V. (161%1) _ VY (9)

Finally, the pressure field is used to compute the new
time velocities:

A R
- —_-yprt! 10)
ot P (

An Incomplete Cholesky Conjugate Gradient De-
composition (ICCG) solver is employed for solving Eq.
9. Having calculated the new time level pressures, the
velocities are updated using Eq. 9.

Figure 1 shows the boundary conditions used in
the VOF method. The ”"in flow” and "out flow”
boundary conditions are mathematically written as:
(ﬁV)fz =0, (ﬁp)ﬁ =0 and (ﬁf)fz = 0, whereas "n”
refers to the normal vector of the boundary. For the
axis of symmetry, no gradient conditions and free-slip
boundary conditions are implemented.

Cawvitation Model
Several cavitation mass transfer models can be used to
replace S in Eq. 4. Among the more recommended

axis of symmetry

no gradient boundary

out flow in flow

Figure 1. The Boundary conditions used in VOF simula-
tions.
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models we have the Rayleigh equation and semi-
analytical schemes [1]. Many semi-analytical schemes
are based on the modified Rayleigh theory or a mass-
momentum interaction model around the cavity inter-
face [23]. In current study, the semi-analytical model
of Kunz is used to treat S in Eq. 4:

ﬁ+‘7§f: Odestpl min(-Pl_Pvao)f Oprod(]-_f)f2

ot (1/2p,VZ)p, oo Pt
(11)

where Cgese = 9 x 10° and Cproq = 3 x 10* are

numerical-experimental weighting coefficients.  The
flow characteristic time, t.,, is defined as the ratio of
the maximum solid-body diameter to the main flow
velocity. The second term in the right hand side
of Eq. 11 is for the condensation that occurs near
the cavity closure region. This phenomenon causes
small vapor structures to detach from the end of the
cavity. The Kunz model assumes a moderate rate of
constant condensation; therefore, it reconstructs the
cavity region more accurately than the other models
[1, 23].

Boundary Element Method (BEM)
This section explains the BEM cavitation model based
on the potential flow theory.

Mathematical Formulation

The potential flow model presented here is based on
Green’s third identity formulation [15]. Applying this
formulation to the axisymmetric disturbance velocity
potential, ¢, results in:

27r99(r,x)://{g—zG(x,r;§,R)
s

9G (z,7;¢, R)

el =,

}Rdcp ds (12)
where n is the normal vector directed outward from

the solid-body surface and the cavity interface, s is

A
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Figure 2. Source ring in a cylindrical coordinate.

the arclength along a meridian, and x and r are the
components of the axisymmetric coordinate system.
G (z,7;€, R) is the potential function related to the
fluid sources distributed along a ring of radius R
located on the axis at = ( (see Figure 1). The
potential function is defined as:

+7
G(x,r;é)R)Z/ do
7 \/(x — &) 4+ 72 + R? — 2rRcos(¢)
= RJY(A,B) (13)
where
A=r’+ R* 4+ (2 —¢)*
B=2rR (14)
and
J)(A,B) = 4 K (k)
tymE T A+ B

, 2B
T A+B

(15)

Equation 13 states that the potential flow on
any surface can be shown by means of a series of
ring-distribution of sources and dipoles. For this
purpose, a series of source rings is distributed on the
liquid/cavity interface, and a series of dipoles rings on
the solid-body/cavity interface (Figure 1). The total
and disturbance potentials are related by:

b=zt (16)

where all quantities are made dimensionless with re-
spect to p, Uy and d. The boundary conditions are
kinematic condition on the solid-body surface. Both
the kinematic and dynamic conditions are on the
liquid/cavity interface. These conditions are mathe-
matically formulated as:

17

a—i =0 on Sb U SC (17)
9o

% =+v1+o on SC (18)

where S; and S, are the areas of the solid-body surface
and the liquid/cavity interface, respectively. These
boundary conditions are equal to:

2 _

5, = ~In on S, U S, (19)
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and
Iy
E:\/l—ko—xs on S, (20)

where n and s are unit vectors normal and tangent to
the solid-body/cavity boundary, respectively. The last
boundary condition may be integrated to yield:

v=po+V1+to(s—s9)—(zr—zy) ons, (21)

where ¢y, is the potential at the detachment point of
the cavity on the solid body.

Governing Integral Equation

Placing the unknowns on the left-hand side and the
knowns on the right-hand side, Green’s third identity
is written as:

27T99+// 8_dS // —GdS =
// ——GdS — // —dS (22)

on the wetted portion of the solid-body/cavity bound-
ary and on the liquid/cavity interface:

// Tas - // g"oads // 9% Gas
—2%@—4/@‘2—5&? (23)

Implementing the above boundary conditions, Eq. (22)
can be Written as:

2w+// ——dS — // 92 Gas

+¢0//—d5+\/1+—0 // s = s0) —dS
—//andS+//($—$o)%dS (24)
Sy Se

on the solid body, and Eq. (22

// —dS — // GdS + g 27r+//—d5

} becomes:

+VTTo 2w<s—so>+£/<s—so>‘Z—Gds
_4/InGdS+ 27r(x—xo)+l(/(x—xo)%d5
(25)

on the liquid/cavity interface.

In addition to these equations, an auxiliary condi-
tion is required for which we impose the condition that
the net source strength be equal to the flux through
the jet, which may be expressed as:

/ / 9% 45 = / / 2dS (26)

RESULTS AND DISCUSSION

The two methods described above were used to inves-
tigate various effects associated with an axisymmetric
body consisting of a disk cavitator followed by a conical
section and ending in a cylindrical shape (Figure
4). The geometry parameters shown in Figure 4 are
nondimension-alized based on the cavitator diameter.

To validate the models, the results of the two
methods are compared with each other and with those
of the available experiments in the literature. Water
properties at 25°C are considered in this study.

Model Validation

Although cavitation is a complex two-phase phe-
nomenon, analytical solutions of super-cavitation be-
hind simple obstacles such as a disk or a sphere are
available. Reichardt analytical relation [24] for super-
cavitation behind axisymmetric cavitator is given by:

o + 0.008

lcavity,max _

27
dca’u’ity,lnax 0(170 + 0066) ( )
dcavityn.ax _ Cp 0-5 (28)
Dcavitator 0'(1 — 0.1320'0'5)

where lcqvity,mar and deqvity,mes are the maximum
length and diameter of the cavity, respectively, and

Dipole & Source Rings

Dipole R}% g '.} ‘.‘
Ve . &5 [ ; :
Figure 3. Application of the superposition of the free

stream, with distributions of the dipoles and sources rings
on the interface of the body/cavity and the liquid/cavity to
solve cavitation.

Lcone | L“'l

Figure 4. Schematic of the axisymmetric body.
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Figure 5. Dimensionless cavity length vs. cavitation
number for a disk cavitator.
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Figure 6. Dimensionless cavity diameter vs. cavitation
number for a disk cavitator.

D yvitator represents the maximum diameter of cavi-
tator.

Palset and Schaffer proposed the following analyt-
ical equation for the drag coefficient of a disk cavitator
for cavitation numbers less than 1.5 [25]:

Cp = Cpy(1+ 0 +0.028 ¢%) (29)

where Cp, is equal to 0.8053.

The cavitation behind a disk cavitator for several
cavitation numbers is simulated using both VOF and
BEM methods. The results of the two methods
are compared with each other and with those of the
analytical relations given by Eqs. 27, 28 and 29. Figure
5 compares the results of the two methods with those
of the available experiments [1] and Reichardt relation
(Eq. 28). As understood from the figure, the results of
both models agree well with those of the experiments
and the theory for high cavitation numbers (¢ > 0.15).
For lower cavitation numbers, while the VOF method
predictions are in good agreement with Reichardt
relation, the BEM method slightly overpredicts the
experimental measurements. The results from different
methods and experiments for dimensionless cavity di-
ameter versus cavitation number are shown in Figure 6.

The VOF method gives a better prediction compared
to that of Reichardt relation (the difference being
less than 3.3%). The results of the BEM technique,
however, are closer to those of the experiments. The
comparison between the two methods, experiments,
and Palset-Schafler equation (Eq. 28) for the drag
coefficient is displayed in Figure 7. While the VOF
model well predicts the experimental results, the BEM
method underpredicts the measurements.

Partial Cavitation over an Axisymmetric Body
In this section, we study the partial cavitation over
the axisymmetric body under consideration (Figure 4).
The effects of various parameters (cone length, cone
angle, and cylinder diameter) on the shape of the cavity
for different cavitation numbers are investigated. The
results of VOF model for a base case is shown in Figure
8 for a cavitation number of ¢ = 0.0698. For this
case: R,=0.25, the cone angle is a=7.407° and the
cylinder radius is R.y;= 0.9. In the VOI method, the
full Navier-Stokes equations are solved; therefore, all
information regarding the flow is obtained. Figure 8
displays the shape of the cavity along with flow velocity
and pressure distributions. The velocity magnitude
is seen to be related to the phase of the flow, in
the vapor phase the velocity has a smaller magnitude.

12
1.1 A 0t T
° ® LT
L .-
1 I o ~87 & B
c o 0%, .-s
i .
09 - Lo OA- /A . -
- - =
08 +° - e Experiment [25]
a  BEM method
0.7 A o VOF method
— - - Palset-Schaffer Eq.
0.6 T T . . .

0 0.05 01 015 02 025 03 035 04
g

Figure 7. Drag coefficient vs. cavitation number for a disk
cavitator.
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Figure 8. The results of the VOF model for a base case
with R.=0.25 and E.,;= 0.9 for a cavitation number of o
= 0.0698. The image contains cavity shape, velocity and
pressure distributions. Pressures shown in this and all the
following figures are in Pascal.
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The reentrant jet at the cavity closure region and the
backward flow within the cavity is visible in the figure.
The pressure in the vapor phase is seen to be constant
and equal to that of the vapor pressure.

To investigate the effects of different geometric
parameters, while one parameter is changed from that
of the base case, other parameters are held constant.
The results for each case are first presented using the
VOF method. Then, a quantitative comparison is
performed between the two methods of VOF and BEM.

Effect of Cone Length

To study the effect of cone length, the cone angle
at a=7.407° and the cylinder diameter at R.,;=0.9
were held constant. Then, by varying R, (Figure 4),
different cone lengths (L.one) were produced. Three
different values of R, were considered for this study.
Figure 9 shows the results obtained from the VOF
method for two values of R, equal to 0.167 and 0.5.
For the base case shown in Figure 8 R. was equal
to 0.25. A comparison between Figure 8 and the two
images of Figure 9 reveals that as the cone length is
increased, the cavity region covers a larger space. The
case with R.=0.5 needs extra attention because in this

case, the cone length is decreased to the extent that no
cavitator exists in front of the body any longer. As seen
in Figure 9, the results of both methods indicate that
the cavity length does not change significantly when the
R, is changed. The BEM method does not predict the
reentrant jet phenomenon; the method needs a more
sophisticated model for treating the closure region.

To see the effect of cone length more clearly, the
dimensionless cavity length vs. cavitation number for
different cone lengths (by varying R.) are shown in
Figure 10, where the results of both the VOF and BEM
methods are shown. No experimental or analytical
results were available in this case. However, to show
the difference between supercavitation behind a disk
cavitator (no cylinder) and partial cavitation behind
the axisymmetric body under consideration, the results
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Figure 10. Dimensionless cavity length vs. cavitation
number for different cone lengths (by varying R.). The
results are shown using both the VOF and BEM methods.
The experimental and analytical results should not be
compared with those of the two methods (refer to section

of "Effect of Cone Length”).
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Figure 11. Dimensionless cavity diameter vs. cavitation
number for different cone lengths (by varying R.). The
results are shown using both the VOF and BEM methods.
The experimental and analytical results should not be
compared with those of the two methods (refer to section

of "Effect of Cone Length”).
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of supercavitiaon behind a disk are also displayed in
Figure 10. Therefore, the VOF and BEM results in
the figure should not be compared with experimental
points and the analytical curve shown in the figure. As
seen from Figure 10, while in the BEM method, the
cone length makes no difference in the cavity length,
the VOF method predicts a smaller cavity when the
cone length is decreased. As the cavity length is
related to the inverse of the cavitation number, when
cavitation number increases (i.e., less cavitation) the
VOF and BEM results are nearing each other as seen
in Figure 10.

Figure 11 shows the dimensionless cavity diameter
versus cavitation number for the same geometric varia-
tion discussed above (R, is varying). As observed, the
diameter of the partial-cavity predicted by the BEM
method does not change with cone length; the results
of this method lie in those of the Reichardt relation for
supercavitation. The VOF method, however, predicts a
smaller value for the cavity diameter compared to that
of the BEM. When cavitation number is decreased, the
results of the two methods approximate each other.
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Effect of Cylinder Radius

The results of the VOF and BEM methods for the
shape of the cavity for four different R, (nondimen-
sional cylinder radii) are plotted in Figure 12. For the
case considered here, the cone angle o was 7.407°, R,
was 0.25 and L.y+Lcone = 40 (see Figure 4). The
cylinder radius was R.;=0.5, 0.7, 0.9, 1.1. As seen
from Figure 12, the cylinder radius has no significant
effect on cavity length. The cavity diameter, however,
is decreased when the cylinder has a larger radius. The
cavity detachment from the cylinder is also expected to
occur in a cylinder with a smaller radius.

The dimensionless cavitation length vs. cavita-
tion number for two different cylinder radii is plotted
in Figure 13. The results of the experiments and theory
for supercavitation behind a disk cavitator with radius
Rasere (i.e. with no cone and cylinder body) are also
shown. For low cavitation numbers, discrepancies are
observed between the results of the two methods (VOF
and BEM). The two results, however, agree well when
cavitation number increases (o > 0.2). It can be seen
from both methods that when R,y is decreased, the
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Figure 12. The results of the VOF and BEM methods for the effect of cylinder radius (at constant cone angle and R.) on
the characteristics of cavitation for a cavitation number of nearly 0.09.
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shape of the cavity approaches that of the supercavity
behind a disk cavitator.

The effect of cylinder radius of a constant cone
angle on the nondimensional maximum cavity diameter
is displayed in Figure 14. While the results of the
BEM method follow those of the supercavitation of Re-
ichardt analytical relation, the VOF method predicts
a variation of cavity diameter as the cylinder radius is
changed. From the results of this method, it appears
that the ratio of R.yi/Raisk is an important parameter.
When R,,; increases, the effect of cavitator diameter on
the cavity is reduced.

Effect of Cone Angle

The last effect considered is that of the cone angle for
a cylinder with L.y;+Leone = 40 and L.one=5 where
R. was 0.25. Three cone angles of 4°, 6.3°, and 10.75°
were considered. Figure 15 displays the results of the
VOF and BEM methods for these cases. Reducing the
cone angle increases both the length and diameter of
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Figure 13. Dimensionless cavitation length vs. cavitation
number (R.,;=0.5, 1.1). The experimental and analytical
results should not be compared with those of the two
methods (refer to section of "Effect of Cone Length”).
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Figure 15. The results of the VOF and BEM methods
for the effect of cone angle (at constant R.) on the
characteristics of cavitation for a cavitation number of

nearly 0.09.

the cavity region. It should be mentioned that the
reason for the selection of a cavitation number of nearly
0.09 for this figure (and Figure 12) was because in
this condition, the effects of geometric parameters and
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Figure 16. Dimensionless cavitation length vs. cavitation
number (a=4°, 6.3°, 10.75° or R.,; = 0.6, 0.8, 1.2); R.
was held constant. The experimental and analytical results
should not be compared with those of the two methods
(refer to section of ”Effect of Cone Length”).
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Figure 17. Dimensionless cavitation diameter vs. cavita-
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the comparison between the two methods of VOF and
BEM are more clearly visible.

Figure 16 shows the dimensionless cavity length
vs. cavitation number for two different cone angles.
Similar to the previous figures, the experimental and
theoretical results for supercavitation behind a disk
cavitator are also plotted in the figure. As observed,
the cavity length decreased when the cone angle in-
creased for the same cavitation number. Differences
between the two methods of VOF and BEM are seen
at low cavitation numbers. However, when ¢ is greater
than 0.2, the results get closer to each other.

The effect of cone angle (at constant R.) on
the cavity diameter is observed in Figure 17. The
predictions from both methods are close to each other
and to those of the Reichardt analytical relation for the
supercavity condition. Therefore, it can be stated that

the cone angle has no significant effect on the maximum
cavity diameter.

CONCLUSION

In this paper, the partial cavitation over axisymmetric
bodies is studied using two numerical methods: the
VOF technique based on the solution of the Navier-
Stokes equations along with an equation for liquid
volume fraction, and boundary element method (BEM)
based on the potential flow theory. The following
summarizes the main achievements of this study:

1. The results of the two methods agree well with each
other and with those of the experiments and theory
for a disk cavitator.

2. For an axisymmetric body with a front cavitator,
while the two results are in good agreement for
large cavitation numbers, discrepancies are seen for
a cavitation number less than 0.2.

3. The effects of various parameters such as cone
length, cone angle, and cylinder diameter on the
shape of the cavity are investigated.

4. The effect of cone length is studied for a partial
cavity over an axisymmetric body consisting of a
disk cavitator followed by a conical section and
ending in a cylindrical shape. Three different values
of R, (Figure 4) were considered for this study. The
results reveal that as the cone length increases, the
cavity region covers a larger space.

5. Moreover, the shape of partial cavitation for four
different values of R.,; is simulated in this paper.
As seen, the cylinder radius has no significant effect
on cavity length. The cavity diameter, however, is
decreased when the cylinder has a larger radius.
The cavity detachment from the cylinder is also
expected to occur in a cylinder with a smaller
radius.

6. The last effect considered is that of the cone angle.
Reducing the cone angle increases both the length
and diameter of the cavity region.
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